Skip to main content
Log in

Erosion Behavior of Cold-Sprayed Coatings Made of CoCrFeMnNi HEA and Tungsten Carbide Nanoparticles in a Nickel Matrix

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The study investigated the performance of CoCrFeMnNi high entropy alloy and tungsten carbide–nickel coatings under alumina particle impingement. The coatings were applied to 2205 duplex stainless steel substrates by cold spray using nitrogen. For the composite coatings, the amount of WC nanoparticles entrapped in the Ni matrix was estimated as 42.5 ± 8 vol.%. A cold-sprayed interlayer of 316 stainless steel promoted CoCrFeMnNi HEA deposition. Post-process annealing was performed on the coatings. After 3 hours of holding time, x-ray diffraction examination revealed no tungsten decarburization in the WC/Ni-Ni coating. Annealing peak temperatures for the WC/Ni–Ni and high entropy alloy coatings were 600 and 550 °C, respectively. The effect of SS316 annealing on subsequent HEA deposition and coating’s erosion behavior was also investigated. Microhardness tests showed the HEA coating outperforming the WC/Ni-Ni. The coatings were subjected to impact erosion using alumina particles at three different approach angles: 30°, 60°, and 90°. To compare the different materials, average erosion values were calculated expressed in volume loss per grams of erodent. The as-sprayed WC/Ni–Ni was the most effective against 60° impingement angle, while HEA coatings demonstrated promising under impacts at 30° and 90°. Overall, the 30° impact orientation was identified as the most critical condition. Eroded surfaces were examined using optical microscopy (OM) and scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.P. Paul, S.K. Mishra, P. Tiwari and L.M. Kukreja, Solid-Particle Erosion Behaviour of WC/Ni Composite Clad Layers with Different Contents of WC Particles, Opt. Laser Technol., 2013, 50, p 155-162. https://doi.org/10.1016/j.optlastec.2013.03.002

    Article  CAS  Google Scholar 

  2. K. Van Acker, D. Vanhoyweghen, R. Persoons and J. Vangrunderbeek, Influence of Tungsten Carbide Particle Size and Distribution on the Wear Resistance of Laser Clad WC/Ni Coatings, Wear, 2005, 258(1–4), p 194-202.

    Article  Google Scholar 

  3. L. Du, B. Xu, S. Dong, W. Zhang, J. Zhang, H. Yang and H. Wang, Sliding Wear Behavior of the Supersonic Plasma Sprayed WC-Co Coating in Oil Containing Sand, Surf. Coatings Technol., 2008, 202(15), p 3709-3714.

    Article  CAS  Google Scholar 

  4. J.R.T. Branco, R. Gansert, S. Sampath, C.C. Berndt and H. Herman, Solid Particle Erosion of Plasma Sprayed Ceramic Coatings, Mater. Res., 2004, 7(1), p 147-153.

    Article  CAS  Google Scholar 

  5. Y. Lian and Y. Li, Investigation on Erosion Resistance of WC–Co–Cr Coatings, Tribol. Online, 2018, 13(2), p 36-42.

    Article  Google Scholar 

  6. S.G. Sapate, N. Tangselwar, S.N. Paul, R.C. Rathod, S. Mehar, D.S. Gowtam and M. Roy, Effect of Coating Thickness on the Slurry Erosion Resistance of HVOF-Sprayed WC-10Co-4Cr Coatings, J Thermal Spray Technol, 2021, 30, p 1365-1379. https://doi.org/10.1007/s11666-021-01190-2

    Article  CAS  Google Scholar 

  7. J. Tang, G.C. Saha, P. Richter, J. Kondás, A. Colella and P. Matteazzi, Effects of Post-Spray Heat Treatment on Hardness and Wear Properties of Ti-WC High-Pressure Cold Spray Coatings, J. Therm. Spray Technol., 2018, 27(7), p 1153-1164.

    Article  CAS  Google Scholar 

  8. M. Kazasidis, E. Verna, S. Yin and R. Lupoi, The Effect of Heat Treatment and Impact Angle on the Erosion Behavior of Nickel-Tungsten Carbide Cold Spray Coating Using Response Surface Methodology, Emerg Mater, 2021, 4(6), p 1605-1618.

    Article  CAS  Google Scholar 

  9. S.J. McMaster, T.W. Liskiewicz, A. Neville and B.D. Beake, Probing Fatigue Resistance in Multi-Layer DLC Coatings by Micro-and Nano-Impact: Correlation to Erosion Tests, Surf. Coat. Technol., 2020, 402, p 126319. https://doi.org/10.1016/j.surfcoat.2020.126319

    Article  CAS  Google Scholar 

  10. N. Okimura, J. Choi, W. Nakayama, N. Ata, Y. Hirata, N. Ohtake and H. Akasaka, Metal Matrix Composites Using Diamond-like Carbon-Coated Particles Fabricated by Cold Spray Technique, J Thermal Spray Technol, 2020, 29, p 1660-1668. https://doi.org/10.1007/s11666-020-01071-0

    Article  CAS  Google Scholar 

  11. V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, The Cold Spray Materials Deposition Process: Fundamentals and Applications, (2007)

  12. G. Motors, S.N. Laborato-, and F.M. Company, Cold Spray Technology, (n.d)

  13. R.T. Sataloff, M.M. Johns, and K.M. Kost, Modern Cold Spray, Springer, (2015)

  14. S. Rahmati, R.G.A. Veiga, A. Zúñiga and B. Jodoin, A Numerical Approach to Study the Oxide Layer Effect on Adhesion in Cold Spray, J. Therm. Spray Technol., 2021, 30(7), p 1777-1791.

    Article  CAS  Google Scholar 

  15. S.A. Alidokht and R.R. Chromik, Sliding Wear Behavior of Cold-Sprayed Ni-WC Composite Coatings: Influence OF WC Content, Wear, 2021, 477, p 203792. https://doi.org/10.1016/j.wear.2021.203792

    Article  CAS  Google Scholar 

  16. S. Yin, E.J. Ekoi, T.L. Lupton, D.P. Dowling and R. Lupoi, Cold Spraying of WC-Co-Ni Coatings Using Porous WC-17Co Powders: Formation Mechanism, Microstructure Characterization and Tribological Performance, Mater. Des., 2017, 126, p 305-313. https://doi.org/10.1016/j.matdes.2017.04.040

    Article  CAS  Google Scholar 

  17. R.G. Rateick, K.R. Karasek, A.J. Cunningham, K.C. Goretta and J.L. Routbort, Solid-Particle Erosion of Tungsten Carbide/Cobalt Cermet and Hardened 440C Stainless Steel-A Comparison, Wear, 2006, 261(7–8), p 773-778.

    Article  CAS  Google Scholar 

  18. M. Bromark, P. Hedenqvist, and S. Hogmark, Coated Tool Steels, Science 186187, 189-194 (1995)

  19. E. Bousser, L. Martinu and J.E. Klemberg-Sapieha, Solid Particle Erosion Mechanisms of Protective Coatings for Aerospace Applications, Surf. Coat. Technol., 2014, 257, p 165-181.

    Article  CAS  Google Scholar 

  20. I.M. Hutchings, Ductile-Brittle Transitions and Wear Maps for the Erosion and Abrasion of Brittle Materials, J. Phys. D Appl. Phys., 1992, 25(1), p A212-A221.

    Article  Google Scholar 

  21. G.L. Sheldon and I. Finnie, On the Ductile Behavior of Nominally Brittle Materials during Erosive Cutting, J. Manuf. Sci. Eng. Trans. ASME, 1966, 88(4), p 387-392.

    Article  CAS  Google Scholar 

  22. J. Menghani, A. Vyas, P. Patel, H. Natu and S. More, Wear, Erosion And Corrosion Behavior of Laser Cladded High Entropy Alloy Coatings–A Review, Mater Today: Proceed, 2021, 38, p 2824-2829. https://doi.org/10.1016/j.matpr.2020.08.763

    Article  CAS  Google Scholar 

  23. R.B. Nair, K. Selvam, H.S. Arora, S. Mukherjee, H. Singh and H.S. Grewal, Slurry Erosion Behavior of High Entropy Alloys, Wear, 2017, 386, p 230-238. https://doi.org/10.1016/j.wear.2017.01.020

    Article  CAS  Google Scholar 

  24. J. Xu, S. Peng, Z. Li, S. Jiang, Z.H. Xie, P. Munroe and H. Lu, Remarkable Cavitation Erosion–Corrosion Resistance of CoCrFeNiTiMo High-Entropy Alloy Coatings, Corros. Sci., 2021, 190, p 109663. https://doi.org/10.1016/j.corsci.2021.109663

    Article  CAS  Google Scholar 

  25. F. Ghadami, M.A. Davoudabadi, and S. Ghadami, Cyclic Oxidation Properties of the Nanocrystalline AlCrFeCoNi High-Entropy Alloy Coatings Applied by the Atmospheric Plasma Spraying Technique. Coatings, 12(3) (2022)

  26. C.J. Akisin, C.J. Bennett, F. Venturi, H. Assadi and T. Hussain, Numerical and Experimental Analysis of the Deformation Behavior of CoCrFeNiMn High Entropy Alloy Particles onto Various Substrates During Cold Spraying, J Thermal Spray Technol, 2022, 31(4), p 1085-1111. https://doi.org/10.1007/s11666-022-01377-1

    Article  CAS  Google Scholar 

  27. R. Nikbakht, C.V. Cojocaru, M. Aghasibeig, É. Irissou, T.S. Kim, H.S. Kim and B. Jodoin, Cold Spray and Laser-Assisted Cold Spray of CrMnCoFeNi High Entropy Alloy Using Nitrogen as the Propelling Gas, J. Therm. Spray Technol., 2022, 31(4), p 1129-1142.

    Article  CAS  Google Scholar 

  28. J.E. Ahn, Y.K. Kim, S.H. Yoon and K.A. Lee, Tuning the Microstructure and Mechanical Properties of Cold Sprayed Equiatomic CoCrFeMnNi High-Entropy Alloy Coating Layer, Metals Mater Int, 2021, 27, p 2406-2415. https://doi.org/10.1007/s12540-020-00886-4

    Article  CAS  Google Scholar 

  29. J. Mahaffey, A. Vackel, S. Whetten, M. Melia and A.B. Kustas, Structure Evolution and Corrosion Performance of CoCrFeMnNi High Entropy Alloy Coatings Produced Via Plasma Spray and Cold Spray, J Thermal Spray Technol, 2022, 31(4), p 1143-1154.

    Article  CAS  Google Scholar 

  30. Z. Zeng, M. Xiang, D. Zhang, J. Shi, W. Wang, X. Tang and K. Morita, Mechanical Properties of Cantor Alloys Driven by Additional Elements: A Review, J Mater Res Technol, 2021, 15, p 1920-1934. https://doi.org/10.1016/j.jmrt.2021.09.019

    Article  CAS  Google Scholar 

  31. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61(15), p 5743-5755.

    Article  CAS  Google Scholar 

  32. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan and A. Hohenwarter, Mechanical Properties, Microstructure and Thermal Stability of a Nanocrystalline CoCrFeMnNi High-Entropy Alloy after Severe Plastic Deformation, Acta Mater., 2015, 96, p 258-268.

    Article  CAS  Google Scholar 

  33. L. Baiamonte, G. Pulci, A. Gisario, L. Paglia, A.L. Marino, M. Tului and F. Marra, WC-Ti Coatings Deposited Via Cold Gas Spray and Modified by Laser and Furnace Heat Treatments, J Thermal Spray Technol, 2021, 30, p 2083-2098. https://doi.org/10.1007/s11666-021-01278-9

    Article  CAS  Google Scholar 

  34. S.A. Alidokht, P. Vo, S. Yue and R.R. Chromik, Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings, J. Therm. Spray Technol., 2017, 26(8), p 1908-1921.

    Article  CAS  Google Scholar 

  35. ISO 113581, International Standard ITeh Standard ITeh Standard Preview, Int. Organ. Stand., p 3-6 (2015)

  36. C. Wei, Z. Liu, Y. Bao, D. Wan, Y. Qiu and X. Liu, Evaluating Thermal Expansion Coefficient and Density of Ceramic Coatings by Relative Method, Mater. Lett., 2015, 161, p 542-544. https://doi.org/10.1016/j.matlet.2015.09.034

    Article  CAS  Google Scholar 

  37. H.Z. Li, J. Wang and J.M. Fan, Analysis and Modelling of Particle Velocities in Micro-Abrasive Air Jet, Int J Machine Tools Manuf, 2009, 49(11), p 850-858. https://doi.org/10.1016/j.ijmachtools.2009.05.012

    Article  Google Scholar 

  38. B.J. Connolly, E. Loth and C.F. Smith, Drag and Bounce of Irregular Particles and Test Dust, AIAA Propuls. Energy Forum Expo., 2019, 2019(363), p 275-285.

    Google Scholar 

  39. Astm, G76-07, Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets, ASTM Int., pp 1-6 (2013)

  40. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212.

    Article  CAS  Google Scholar 

  41. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 368(1–2), p 222-230.

    Article  Google Scholar 

  42. S. Yin, M. Meyer, W. Li, H. Liao and R. Lupoi, Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review, J Thermal Spray Technol, 2016, 25, p 874-896.

    Article  Google Scholar 

  43. A.P. Alkhimov, V.F. Kosarev and S.V. Klinkov, The Features of Cold Spray Nozzle Design, J. Therm. Spray Technol., 2001, 10(2), p 375-381.

    Article  Google Scholar 

  44. V.K. Champagne, D.J. Helfritch, S.P.G. Dinavahi and P.F. Leyman, Theoretical and Experimental Particle Velocity in Cold Spray, J. Therm. Spray Technol., 2011, 20(3), p 425-431.

    Article  CAS  Google Scholar 

  45. W.Y. Li, H. Liao, G. Douchy and C. Coddet, Optimal Design of a Cold Spray Nozzle by Numerical Analysis of Particle Velocity and Experimental Validation with 316L Stainless Steel Powder, Mater. Des., 2007, 28(7), p 2129-2137.

    Article  CAS  Google Scholar 

  46. W. Li, H. Assadi, F. Gaertner and S. Yin, A Review of Advanced Composite and Nanostructured Coatings by Solid-State Cold Spraying Process, Critic Rev Solid State Mater Sci, 2019, 44(2), p 109-156. https://doi.org/10.1080/10408436.2017.1410778

    Article  CAS  Google Scholar 

  47. S. Özbilen, Satellite Formation Mechanism in Gas Atomized Powders, Powder Metall., 1999, 42(1), p 70-78.

    Article  Google Scholar 

  48. S.A. Alidokht, P. Vo, S. Yue and R.R. Chromik, Erosive Wear Behavior of Cold-Sprayed Ni-WC Composite Coating, Wear, 2017, 376, p 566-577. https://doi.org/10.1016/j.wear.2017.01.052

    Article  CAS  Google Scholar 

  49. Y. Qian and Z. Zhao, Microstructure and Properties of Ultrafine Cemented Carbides Prepared by Microwave Sintering of Nanocomposites, Crystals, 2020, 10(6), p 507.

    Article  CAS  Google Scholar 

  50. M. Kazasidis, E. Verna, S. Yin, and R. Lupoi, Investigation of the Effect of Low-Temperature Annealing and Impact Angle on the Erosion Performance of Nickel-Tungsten Carbide Cold Spray Coating Using Design of Experiments. In ITSC2022 (pp 763-772). ASM International

  51. S. Yin, X.F. Wang, W.Y. Li and H.E. Jie, Effect of Substrate Hardness on the Deformation Behavior of Subsequently Incident Particles in Cold Spraying, Appl. Surf. Sci., 2011, 257(17), p 7560-7565.

    Article  CAS  Google Scholar 

  52. S. Bagherifard, J. Kondas, S. Monti, J. Cizek, F. Perego, O. Kovarik and M. Guagliano, Tailoring Cold Spray Additive Manufacturing of Steel 316 L for Static and Cyclic Load-Bearing Applications, Mater. Des., 2021, 203, p 109575. https://doi.org/10.1016/j.matdes.2021.109575

    Article  CAS  Google Scholar 

  53. S. Yin, J. Cizek, X. Yan and R. Lupoi, Annealing Strategies for Enhancing Mechanical Properties of Additively Manufactured 316L Stainless Steel Deposited by Cold Spray, Surf. Coat. Technol., 2019, 370, p 353-361. https://doi.org/10.1016/j.surfcoat.2019.04.012

    Article  CAS  Google Scholar 

  54. S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu and R. Lupoi, Deposition of FeCoNiCrMn High Entropy Alloy (HEA) Coating via Cold Spraying, J. Mater. Sci. Technol., 2019, 35(6), p 1003-1007. https://doi.org/10.1016/j.jmst.2018.12.015

    Article  CAS  Google Scholar 

  55. S.A. Alidokht, J. Lengaigne, J.E. Klemberg-Sapieha, S. Yue and R.R. Chromik, Effect of Microstructure and Properties of Ni-WC Composite Coatings on Their Solid Particle Erosion Behavior, J. Mater. Eng. Perform., 2019, 28, p 1532-1543. https://doi.org/10.1007/s11665-019-03956-w

    Article  CAS  Google Scholar 

  56. H. Oettel and R. Wiedemann, Residual Stresses in PVD Hard Coatings, Surf Coatings Technol, 1995, 76, p 265-273. https://doi.org/10.1016/0257-8972(95)02581-2

    Article  Google Scholar 

  57. T. Suhonen, T. Varis, S. Dosta, M. Torrell and J.M. Guilemany, Residual Stress Development in Cold Sprayed Al Cu and Ti Coatings, Acta Mater., 2013, 61(17), p 6329-6337. https://doi.org/10.1016/j.actamat.2013.06.033

    Article  CAS  Google Scholar 

  58. S.H. Zahiri, C.I. Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium via Cold Gas Dynamic Spraying, (2008)

Download references

Acknowledgments

The authors express their appreciation to SchuF Valve Technology GmbH and ESA for their financial support (Grant: 4000137618/22/NL/GLC/idb). Special thanks are extended to Trinity College Dublin's CRANN Advanced Microscopy Laboratory (AML) for their valuable assistance in microscopy characterization and analysis. This project received additional backing from the EU Commission Recovery and Resilience Facility through the Science Foundation Ireland Future Digital Challenge Grant Number 22/NCF/FD/10827. Support was also provided by Science Foundation Ireland under Grant 18/EPSRC-CDT-3581 and the Engineering and Physical Sciences Research Council (EPSRC) Grant EP/S023259/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Cappelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 2023 International Thermal Spray Conference, held May 22–25, 2023, in Québec City, Canada, and has been expanded from the original presentation. The issue was organized by Giovanni Bolelli, University of Modena and Reggio Emilia (Lead Editor); Emine Bakan, Forschungszentrum Jülich GmbH; Partha Pratim Bandyopadhyay, Indian Institute of Technology, Karaghpur; Šárka Houdková, University of West Bohemia; Yuji Ichikawa, Tohoku University; Heli Koivuluoto, Tampere University; Yuk-Chiu Lau, General Electric Power (Retired); Hua Li, Ningbo Institute of Materials Technology and Engineering, CAS; Dheepa Srinivasan, Pratt & Whitney; and Filofteia-Laura Toma, Fraunhofer Institute for Material and Beam Technology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappelli, G., Sasnauskas, A., Yin, S. et al. Erosion Behavior of Cold-Sprayed Coatings Made of CoCrFeMnNi HEA and Tungsten Carbide Nanoparticles in a Nickel Matrix. J Therm Spray Tech 33, 471–488 (2024). https://doi.org/10.1007/s11666-023-01710-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01710-2

Keywords

Navigation