Skip to main content
Log in

Static and Dynamic Corrosion Behaviors of HVOF-Sprayed TiAl-Nb Coating in Molten Zinc

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The static and dynamic corrosion of TiAl-Nb coating in molten zinc could be divided into incubation period and rapid corrosion period. It has a long incubation period during which no corrosion occurs in molten zinc. After the incubation period, the corrosion occurs rapidly and rapid corrosion period is controlled by reaction–diffusion and dissolution mechanisms. The lifetime of TiAl-Nb coating primarily depends on the incubation period, which is not available for other materials. This type of corrosion has not been reported in other literature; we first refer to it as “incubation style” corrosion. The lifetime of TiAl-Nb coating in static corrosion was 41 days, and the lifetime was prolonged in dynamic corrosion. Compared with the static corrosion, the contact probability between the flowing molten zinc and the coating was reduced, the molten zinc was difficult to wet the coating, and the incubation period of dynamic corrosion was prolonged. After the incubation period, the mechanical scouring effect of flowing molten zinc accelerated the loss of corrosion product and spalled TiAl-Nb splats, which shortened the rapid corrosion period. As the erosion speed increased from 100 to 500 r/min, the micromechanical scouring effect of flowing molten zinc was intensified, the incubation period was increased by 27%, and the rapid corrosion period was shortened by 25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.A. Ahmadzadeh, A. Sadeghi, and S.F. Chini, Liquid Metal Corrosion Resistant LaPO4 Coating with Metallophobic Characteristics Fabricated on 316 Stainless Steel using Electrophoretic Deposition Technique, Ceram. Int., 2022, 48(4), p 4563-4575.

    Article  CAS  Google Scholar 

  2. D. Zapico-Álvarez, P. Barges, C. Musik, F. Bertrand, J. Mataigne, M. Descoins, D. Mangelinck, and M. Giorgi, Further Insight into Interfacial Interactions in Iron/Liquid Zn-Al System, Metall. Mater. Trans. A, 2020, 51(5), p 2391-2403.

    Article  Google Scholar 

  3. A.J. López and J. Rams, Protection of Carbon Steel Against Molten Aluminum Attack and High Temperature Corrosion using High Velocity Oxygen-Fuel WC-Co Coatings, Surf. Coat. Technol., 2015, 262, p 123-133.

    Article  Google Scholar 

  4. H. Mizuno and J. Kitamura, MoB/CoCr Cermet Coatings by HVOF Spraying Against Erosion by Molten Al-Zn Alloy, J. Therm. Spray Technol., 2007, 16(3), p 404-413.

    Article  CAS  Google Scholar 

  5. R.T. Loto and E. Özcan, Corrosion Resistance Studies of Austenitic Stainless Steel Grades in Molten Zinc-Aluminum Alloy Galvanizing Bath, J. Fail. Anal. Prev., 2016, 16(3), p 427-437.

    Article  Google Scholar 

  6. N. Setargew, W.Y. Daniel Yuen, and J.C. Hodges, Intermetallic Spike Growth Mechanisms in 316L Stainless Steel in Contact with Molten 55%Al-Zn Metal Coating Alloy, Metall. Res. Technol., 2016, 113(4), p 409.

    Article  Google Scholar 

  7. Z.D. Yu, M.H. Chen, F.J. Li, S.L. Zhu, and F.H. Wang, Synergistic Effect of Corrosion and Wear of the 316 Stainless Steel in Molten Zinc Alloy at 460 °C, Corros. Sci., 2020, 165, p 108411.

    Article  CAS  Google Scholar 

  8. Y.C. Dong, D.R. Yan, J.N. He, J.X. Zhang, and X.Z. Li, Degradation Behaviour of ZrO2-Ni/Al Gradient Coatings in Molten Zn, Surf. Coat. Technol., 2006, 201(6), p 2455-2459.

    Article  CAS  Google Scholar 

  9. J.F. Zhang, C.M. Deng, J.B. Song, C.G. Deng, M. Liu, and K. Zhou, MoB-CoCr as Alternatives to WC-12Co for Stainless Steel Protective Coating and Its Corrosion Behavior in Molten Zinc, Surf. Coat. Technol., 2013, 235, p 811-818.

    Article  CAS  Google Scholar 

  10. A. Nag, M.K. Bhadu, P.K. Bijalwan, and A.S. Pathak, Investigation of Selected HVOF and Plasma Sprayed Coatings for Sustained Performance in Molten Zinc, Corros. Sci., 2021, 180, p 109177.

    Article  CAS  Google Scholar 

  11. X.L. Xie, B.B. Yin, Y. Yang, X.M. Wang, and F.C. Yin, Corrosion Resistance to Molten Zinc of a Novel FeB-10 Mo-12 Al0.25FeNiCoCr Cermet and Coating, J. Therm. Spray Technol., 2022, 31(4), p 1423-1438.

    Article  CAS  Google Scholar 

  12. S. Ma, J. Xing, H. Fu, P. Lyu, B. Dsouza, Y. Gao, G. Liu, Y. Wang, and J. Zhang, Effect of Erosion Angle and Fe2B Orientation on Cavitation Erosion and Interfaces of Fe-B Alloy in High-Velocity Flowing Zinc, Wear, 2018, 412-413, p 60-68.

    Article  CAS  Google Scholar 

  13. G.Z. Liu, J.D. Xing, S.Q. Ma, Y. Wang, and W.Q. Guan, Investigation of Erosion Properties of Directionally Solidified Fe-B Alloy in Various Velocities Liquid Zinc, J. Mater. Res., 2017, 32(12), p 2381-2388.

    Article  CAS  Google Scholar 

  14. X.B. Wang, Corrosion of Co-Cr-W Alloy in Liquid Zinc, Metall. Mater. Trans. B, 2003, 34(6), p 881-886.

    Article  Google Scholar 

  15. G.Z. Liu, S.Q. Ma, J.D. Xing, H.G. Fu, Y. Gao, Y.P. Bai, and Y. Wang, Investigation of Flowing Liquid Zinc Erosion and Corrosion Properties of the Fe-B Alloy at Various Times, J. Mater. Res., 2015, 30(05), p 727-735.

    Article  CAS  Google Scholar 

  16. W.J. Wang, J.P. Lin, Y.L. Wang, Y. Zhang, and G.L. Chen, Isothermal Corrosion TiAl-Nb Alloy in Liquid Zinc, Mater. Sci. Eng. A, 2007, 452-453, p 194-201.

    Article  Google Scholar 

  17. L. Shi, T.J. Hao, X.D. Ni, L.C. Zhang, and L.Q. Zhang, A Method by Calculation of Wetting Angle for Designing of the Corrosion-Resistant Materials in Hot-Dip Galvanizing, Solid State Commun., 2021, 323, p 114102.

    Article  CAS  Google Scholar 

  18. H.J. Zeng, L.Q. Zhang, J.P. Lin, S.J. Zhang, and G.L. Chen, TiAlNb Intermetallic Compound Coating Prepared by High Velocity Oxy-Fuel Spraying, Surf. Coat. Technol., 2011, 206(01), p 178-184.

    Article  CAS  Google Scholar 

  19. H.J. Zeng, L.Q. Zhang, J.P. Lin, X.Y. He, Y.C. Zhang, and P. Jia, Influence of Bond Coats on the Microstructure and Mechanical Behaviors of HVOF-Deposited TiAlNb Coatings, J. Therm. Spray Technol., 2012, 21(06), p 1245-1256.

    Article  CAS  Google Scholar 

  20. H.J. Zeng, L.Y. Ma, C.S. Wang, J.P. Lin, and L.Q. Zhang, The Corrosion Behavior of HVOF TiAlNb Coating in Molten Zn-0.2 wt.% Al, Corros. Rev., 2022, 40(3), p 237-245.

    Article  CAS  Google Scholar 

  21. L. Wang, L.Q. Zhang, Q. Huang, C.L. Zhang, and L.C. Zhang, Characteristics and Thermal Shock Resistance of HVOF-Sprayed TiAlNb Coatings, J. Therm. Spray Technol., 2020, 29(7), p 1752-1762.

    Article  CAS  Google Scholar 

  22. M.M. Wang, R. Gao, H.Y. Gao, Y. Zhou, Y.Y. Fan, Y.Y. Zhao, J. Ju, Y.H. Liu, M.D. Kang, and J. Wang, Improved Corrosion Resistance of Ni-modified Fe-Cr-B Steel in Molten Zinc via Phase Transformation and Microstructure Control, Surf. Coat. Technol., 2019, 374, p 975-986.

    Article  CAS  Google Scholar 

  23. X.L. Xie, F.C. Yin, X.M. Wang, X.M. Ouyang, M.H. Li, and J. Hu, Corrosion Resistance to Molten Zinc of a Novel Cermet Coating Deposited by Activated Combustion High-Velocity Air Fuel (AC-HVAF), J. Therm. Spray Technol., 2019, 28(6), p 1252-1262.

    Article  Google Scholar 

  24. M. Mohammadi, A. Kobayashi, S. Javadpour, and S.A.J. Jahromi, Evaluation of Hot Corrosion Behaviors of Al2O3-YSZ Composite TBC on Gradient MCrAlY Coatings in the Presence of Na2SO4-NaVO3 Salt, Vacuum, 2019, 167, p 547-553.

    Article  CAS  Google Scholar 

  25. Z. Soleimanipour, S. Baghshahi, and R. Shoja-razavi, Improving the Thermal Shock Resistance of Thermal Barrier Coatings through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding, J. Mater. Eng. Perform., 2017, 26(4), p 1890-1899.

    Article  CAS  Google Scholar 

  26. F. Ghadami, A.S.R. Aghdam, and S. Ghadami, Preparation, Characterization and Oxidation Behavior of CeO2-Gradient NiCrAlY Coatings Applied by HVOF Thermal Spraying Process, Ceram. Int., 2020, 46(12), p 20500-20509.

    Article  CAS  Google Scholar 

  27. C.L. Zhang, L.Q. Zhang, M. Kang, L. Wang, Y. Qiao, and J.P. Lin, Corrosion Characteristic and Surface Effect of a Novel TiAl-Nb Alloy in Liquid Zinc, Corros. Sci., 2023, 220, p 111253.

    Article  CAS  Google Scholar 

  28. X.L. Xie, B.B. Yin, F.C. Yin, and X.M. Ouyang, Corrosion Behavior of FeB-30 wt.% Al0.25FeNiCoCr Cermet Coating in Liquid Zinc, Coatings, 2021, 11(6), p 622.

    Article  CAS  Google Scholar 

  29. Z.X. Luo, K. Liu, Z.Z. Cui, X.M. Ouyang, C. Zhang, and F.C. Yin, The Microstructure and Corrosion Resistance of Fe-B-W-Mn-Al Alloy in Liquid Zinc, Materials, 2022, 15(3), p 1092.

    Article  CAS  Google Scholar 

  30. S.Q. Ma, J.D. Xing, H.G. Fu, D.W. Yi, Y.F. Li, J.J. Zhang, B.J. Zhu, and Y. Gao, Microstructure and Interface Characteristics of Fe-B Alloy in Liquid 0.25 wt.% Al-Zn at Various Bath Temperatures, Mater. Chem. Phys., 2012, 132(2-3), p 977-986.

    Article  CAS  Google Scholar 

  31. C.L. Zhang, L.Q. Zhang, Q. Huang, X.D. Sun, L. Wang, J.P. Lin, and L.C. Zhang, Corrosion Resistance of TiAl-Nb Coating on 316L Stainless Steel in Liquid Zinc, J. Mater. Sci., 2021, 56(5), p 4022-4033.

    Article  CAS  Google Scholar 

  32. S.Q. Ma, J.D. Xing, H.G. Fu, Y.L. He, Y. Bai, Y.F. Li, and Y.P. Bai, Interface Characteristics and Corrosion Behaviour of Oriented Bulk Fe2B Alloy in Liquid Zinc, Corros. Sci., 2014, 78, p 71-80.

    Article  CAS  Google Scholar 

  33. D.R. Yan, Y. Yang, Y.C. Dong, X.G. Chen, L. Wang, J.X. Zhang, and J.N. He, Phase Transitions of Plasma Sprayed Fe-Al Intermetallic Coating during Corrosion in Molten Zinc at 640 °C, Intermetallics, 2012, 22, p 160-165.

    Article  CAS  Google Scholar 

  34. Y. Wang, J.D. Xing, S.Q. Ma, G.Z. Liu, Y.L. He, S. Jia, and Y.P. Bai, Effect of Erosion Speed on the Interaction between Erosion and Corrosion of the Fe-3.5 wt% B Alloy in a Flowing Zinc Bath, J. Mater. Res., 2015, 30(06), p 852-859.

    Article  Google Scholar 

  35. Y. Wang, J.D. Xing, S.Q. Ma, B.C. Zheng, H.G. Fu, and G.Z. Liu, Interfacial Morphologies and Erosion-Corrosion Behavior of Directional Fe-3.5 wt.% B Steel in Flowing Liquid Zn Containing 0.30 wt.% Al, Corros. Sci., 2016, 112, p 25-35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was sponsored by the National Natural Science Foundation of China (No. 51871012), the Fundamental Research Funds for the Central Universities (No. FRF-gf-19-023B) and the Open Fund of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials (No. HKDNM201805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiqi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, L., Huang, Q. et al. Static and Dynamic Corrosion Behaviors of HVOF-Sprayed TiAl-Nb Coating in Molten Zinc. J Therm Spray Tech 32, 2507–2524 (2023). https://doi.org/10.1007/s11666-023-01658-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01658-3

Keywords

Navigation