Skip to main content
Log in

Microstructure, Mechanical Property and Corrosion Behavior of Cold-Sprayed Zn Coatings on Mg Alloy Substrate

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Zn coatings on Mg alloy substrate were prepared by in-situ micro-forging-assisted cold spraying with different stainless steel shot additions. Phase, microstructure, mechanical properties and corrosion resistance of Zn coatings were investigated. The results show that the shot addition enhanced the ZnO formation and increased the full width at half maximum of the Zn phase in the Zn coatings. Plastic deformation of Zn particles was enhanced with the coating densities. Microhardness of Zn coatings was increased due to work hardening, grain refinement and densification by the hammering effect of shots. Bond strength was increased and fracture surfaces showed both metallurgical bonding and mechanical interparticle interlocking in Zn coatings. Zn coatings effectively improved the corrosion resistance of the Mg alloy substrate, and the shot addition made a small contribution to the corrosion resistance. The corrosion behavior of Zn coatings was discussed in terms of corrosion products and microstructures after immersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Li, J.B. Wen, Y. Liu, J.G. He, H.N. Shi, and P.W. Tian, Progress in Research on Biodegradable Magnesium Alloys: A Review, Adv. Eng. Mater., 2020, 22(7), p 2000213.

    Article  CAS  Google Scholar 

  2. S. Virtanen, Biodegradable Mg and Mg Alloys: Corrosion and Biocompatibility, Mater. Sci. Eng. B-ADV, 2011, 176(20), p 1600-1608.

    Article  CAS  Google Scholar 

  3. D. Persaud-Sharma and A. Mcgoron, Biodegradable Magnesium Alloys: A Review of Material Development and Applications, J. Biomim. Biomater. Tissue Eng., 2012, 12, p 25-39.

    Article  Google Scholar 

  4. G. Wu, J.M. Ibrahim, and P.K. Chu, Surface Design of Biodegradable Magnesium Alloys—A Review, Surf. Coat. Technol., 2013, 233(1), p 2-12.

    Article  CAS  Google Scholar 

  5. Y. Ding, C. Wen, P. Hodgson, and Y. Li, Effects of Alloying Elements on the Corrosion Behavior and Biocompatibility of Biodegradable Magnesium Alloys: A Review, J. Mater. Chem. B, 2014, 2, p 1912-1933.

    Article  CAS  Google Scholar 

  6. S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswa, Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications, Mat. Sci. Eng. C, 2016, 68, p 948-963.

    Article  CAS  Google Scholar 

  7. M.S. Uddin, C. Hall, and P. Murphy, Surface Treatments for Controlling Corrosion Rate of Biodegradable Mg and Mg-Based Alloy Implants, Sci. Technol. Adv. Mat., 2015, 16(5), p 053501.

    Article  CAS  Google Scholar 

  8. W. Wu, Z. Wang, S. Zang, X. Yu, and S. Chang, Research Progress on Surface Treatments of Biodegradable Mg Alloys: A Review, ACS Omega, 2020, 5(2), p 941-947.

    Article  CAS  Google Scholar 

  9. R.S. Elkamel, A.M. Fekry, A.A. Ghoneim, and L.O. Filippovb, Electrochemical Corrosion Behaviour of AZ91E Magnesium Alloy by Means of Various Nanocoatings in Aqueous Peritoneal Solution: In Vitro and In Vivo Studies, J. Mater. Res. Technol., 2022, 17, p 828-839.

    Article  CAS  Google Scholar 

  10. G.Z. Shen, L.Y. Zhang, W. Wu, H.S. Wu, Z.W. Gu, S. Liu, G.B. Tan, and X.H. Jie, Design and Fabrication of Enhanced Corrosion-resistant LDH-Zn-G/Ni Dual-Layer Structural Coatings on Magnesium Alloys, J. Alloy. Compd., 2022, 917, p 165475.

    Article  CAS  Google Scholar 

  11. V.K. Korrapati, N. Scharnagl, D. Letzig, and M.L. Zheludkevich, Bilayer Coatings for Temporary and Long-Term Corrosion Protection of Magnesium-AZ31 Alloy, Prog. Org. Coat., 2022, 163, p 106608.

    Article  CAS  Google Scholar 

  12. E. Mortezanejad, M. Atapour, H. Salimijazi, A. Alhaji, and A. Hakimizad, Wear and Corrosion Behavior of Aluminate- and Phosphate-Based Plasma Electrolytic Oxidation Coatings with Polytetrafluoroethylene Nanoparticles on AZ80 Mg Alloy, J. Mater. Eng. Perform., 2021, 30, p 4030-4044.

    Article  CAS  Google Scholar 

  13. R. Samadianfard, D. Seifzadeh, and A. Habibi-Yangjeh, Sol-Gel Coating Filled with SDS-Stabilized Fullerene Nanoparticles for Active Corrosion Protection of the Magnesium Alloy, Surf. Coat. Tech., 2021, 419, p 127292.

    Article  CAS  Google Scholar 

  14. Y.K. Wei, X.T. Luo, X. Chu, Y. Ge, G.S. Huang, Y.C. Xie, R.Z. Huang, and C.J. Li, Ni Coatings for Corrosion Protection of Mg Alloys Prepared by An In-Situ Micro-forging Assisted Cold Spray: Effect of Powder Feedstock Characteristics, Corros. Sci., 2021, 184, p 109397.

    Article  CAS  Google Scholar 

  15. W. Yuan, D.D. Xia, S.L. Wu, Y.F. Zheng, Z.P. Guan, and J.V. Rau, A Review on Current Research Status of the Surface Modification of Zn-based Biodegradable Metals, Bioact. Mater., 2022, 7, p 192-216.

    CAS  Google Scholar 

  16. M. Bobby Kannan, C. Moore, S. Saptarshi, S. Somasundaram, M. Rahuma, and A.L. Lopata, Biocompatibility and Biodegradation Studies of a Commercial Zinc Alloy for Temporary Mini-implant Applications, Sci. Rep., 2017, 7, p 15605.

    Article  Google Scholar 

  17. X.R. Zhuo, Y.N. Wu, J. Ju, H. Liu, J.H. Jiang, Z.C. Hu, J. Bai, and F. Xue, Recent Progress of Novel Biodegradable Zinc Alloys: From the Perspective of Strengthening and Toughening, J. Mater. Res. Technol., 2022, 17, p 244-269.

    Article  CAS  Google Scholar 

  18. J.D. Culcasi, P. Seré, C.I. Elsner, and A. Sarli, Control of the Growth of Zinc-Iron Phases in the Hot-Dip Galvanizing Process, Surf. Coat. Technol., 1999, 122(1), p 21-23.

    Article  CAS  Google Scholar 

  19. H. Karima, B. Sameh, B. Baya, B. Louiza, H. Soraya, B. Hatem, and B. Merzoug, Corrosion Inhibition Impact of Pyracantha Coccinea M. Roem Extracts and Their Use as Additives in Zinc Electroplating: Coating Morphology, Electrochemical and Weight Loss Investigations, J. Taiwan Inst. Chem. Eng., 2021, 121, p 337-348.

    Article  CAS  Google Scholar 

  20. C. Stelter and S. Dieckhoff, Influence of Laser Surface Structuring of Steel Sheets on the Mechanical Properties of Electrodeposited Zn-Ni Coatings, Manuf. Rev., 2022, 9, p 1-6.

    Google Scholar 

  21. R. Pedram and T.K. Ross, The Protection of Mild Steel by Zinc-Rich Paint in Flowing Aerated 0.5 M NaCl Solution III. The Effect of Zinc Content, Corros. Sci., 1978, 18(6), p 519-522.

    Article  CAS  Google Scholar 

  22. Y. Bai, Z.H. Wang, X.B. Li, G.S. Huang, C.X. Li, and Y. Li, Corrosion Vehavior of Low Pressure Cold Sprayed Zn-Ni Composite Coatings, J. Alloy. Compd., 2017, 719, p 194-202.

    Article  CAS  Google Scholar 

  23. N.M. Chavan, B. Kiran, A. Jyothirmayi, P.S. Phani, and G. Sundararajan, The Corrosion Behavior of Cold Sprayed Zinc Coatings on Mild Steel Substrate, J. Therm. Spray Techn., 2013, 22(4), p 463-470.

    Article  CAS  Google Scholar 

  24. T.C. Chen, C.C. Chou, T.Y. Yung, K.C. Tsai, and J.Y. Huang, Wear Behavior of Thermally Sprayed Zn/15Al, Al and Inconel 625 Coatings on Carbon Steel, Surf. Coat. Technol., 2016, 303, p 78-85.

    Article  CAS  Google Scholar 

  25. A. Srikanth, G. Basha, and B. Venkateshwarlu, A Brief Review on Cold Spray Coating Process, Mater. Today Proc., 2020, 22, p 1390-1397.

    Article  CAS  Google Scholar 

  26. E. Irissou, J.G. Legoux, A.N. Ryabinin, B. Jodoin, and C. Moreau, Review on Cold Spray Process and Technology: Part I—Intellectual Property, J. Therm. Spray Technol., 2008, 17(4), p 495-516.

    Article  Google Scholar 

  27. N. Fan, J. Cizek, C. Huang, X. Xie, and S. Yin, A New Strategy for Strengthening Additively Manufactured Cold Spray Deposits Through In-process Densification, Addit. Manuf., 2020, 36, p 101626.

    CAS  Google Scholar 

  28. H.L. Yao, Z.H. Yi, C. Yao, M.X. Zhang, H.T. Wang, S.B. Li, X.B. Bai, Q.Y. Chen, and G.C. Ji, Improved Corrosion Resistance of AZ91D Magnesium Alloy Coated by Novel Cold-Sprayed Zn-HA/Zn Double-Layer Coatings, Ceram. Int., 2020, 46(6), p 7687-7693.

    Article  CAS  Google Scholar 

  29. H.L. Yao, X.Z. Hu, Z.H. Yi, J. Xia, and H.T. Wang, Microstructure and Improved Anti-corrosion Properties of Cold-Sprayed Zn Coatings Fabricated by Post Shot-Peening Process, Surf. Coat. Technol., 2021, 422(8), p 127557.

    Article  CAS  Google Scholar 

  30. W. Michael, Microstructure and Bonding Mechanisms in Cold Spray Coatings, Mater. Sci. Technol., 2018, 34, p 2057-2077.

    Article  Google Scholar 

  31. N.B. Maledi, O.P. Oladijo, I. Botef, T.P. Ntsoane, A. Madiseng, and L. Moloisane, Influence of Cold Spray Parameters on the Microstructures and Residual Stress of Zn Coatings Sprayed on Mild Steel, Surf. Coat. Technol., 2017, 318, p 106-113.

    Article  CAS  Google Scholar 

  32. X.T. Luo, Y.K. Wei, Y. Wang, and C.J. Li, Microstructure and Mechanical Property of Ti and Ti6Al4V Prepared by An In-Situ Shot Peening Assisted Cold Spraying, Mater. Design, 2015, 85(15), p 527-533.

    Article  CAS  Google Scholar 

  33. H. Aydin, M. Alomair, W. Wong, P. Vo, and S. Yue, Cold Spray Ability of Mixed Commercial Purity Ti Plus Ti6Al4V Metal Powders, J. Therm. Spray Technol., 2017, 26, p 360-370.

    Article  CAS  Google Scholar 

  34. S.A. Alidokht, V.N.V. Munagala, and R.R. Chromik, Role of Third Bodies in Friction and Wear of Cold-Sprayed Ti and Ti-TiC Composite Coatings, Tribol. Lett., 2017, 65, p 114.

    Article  Google Scholar 

  35. A.W.Y. Tan, J.Y. Lek, W. Sun, A. Bhowmik, L. Marinescu, P.J. Buenconsejo, Z.L. Dong, and E.J. Liu, Microstructure, Mechanical and Tribological Properties of Cold Sprayed Ti6Al4V-CoCr Composite Coatings, Compos. Part B Eng., 2020, 202, p 108280.

    Article  CAS  Google Scholar 

  36. Y.K. Wei, X.T. Luo, Y. Ge, X. Chu, G.S. Huang, and C.J. Li, Deposition of Fully Dense Al-Based Coatings via In-Situ Micro-forging Assisted Cold Spray for Excellent Corrosion Protection of AZ31B Magnesium, J. Alloy. Compd., 2019, 806, p 1116-1126.

    Article  CAS  Google Scholar 

  37. H.X. Zhou, C.X. Li, G. Ji, S.L. Fu, H. Yang, X.T. Luo, G.J. Yang, and C.J. Li, Local Microstructure Inhomogeneity and Gas Temperature Effect in In-Situ Shot-Peening Assisted Cold-Sprayed Ti-6Al-4V Coating, J. Alloy. Compd., 2018, 766, p 694-704.

    Article  CAS  Google Scholar 

  38. Y.K. Wei, X.T. Luo, C.X. Li, and C.J. Li, Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating, J. Therm. Spray Technol., 2017, 26(1-2), p 173-183.

    Article  CAS  Google Scholar 

  39. W.Y. Li, C.J. Li, and G.J. Yang, Effect of Impact-Induced Melting on Interface Microstructure and Bonding of Cold-Sprayed Zinc Coating, Appl. Surf. Sci., 2010, 257(5), p 1516-1523.

    Article  CAS  Google Scholar 

  40. J. Frattolin, R. Roy, S. Rajagopalan, M. Walsh, and R. Mongrain, A Manufacturing and Annealing Protocol to Develop a Cold-Sprayed Fe-316L Stainless Steel Biodegradable Stenting Material, Acta Biomater., 2019, 99, p 479-494.

    Article  CAS  Google Scholar 

  41. G. Bae, Y.M. Xiong, S. Kumar, K. Kang, and C.H. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868.

    Article  CAS  Google Scholar 

  42. T. Hussain, D.G. Mccartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379.

    Article  CAS  Google Scholar 

  43. H. Kovacı, Y.B. Bozkurt, A.F. Yetim, M. Aslan, and A. Çelik, The Effect of Surface Plastic Deformation Produced by Shot Peening on Corrosion Behavior of A Low-Alloy Steel, Surf. Coat. Technol., 2019, 360, p 78-86.

    Article  Google Scholar 

  44. Z.Y. Cui, F. Ge, Y. Lin, L.W. Wang, L. Lei, H.Y. Tian, M.D. Yu, and X. Wang, Corrosion Behavior of AZ31 Magnesium Alloy in the Chloride Solution Containing Ammonium Nitrate, Electrochim. Acta, 2018, 278, p 421-437.

    Article  CAS  Google Scholar 

  45. F.S. da Silva, N. Cinca, S. Dosta, I.G. Cano, J.M. Guilemany, and A.V. Benedetti, Effect of the Outer Layer of Al Coatings Deposited by Cold Gas Spray on the Microstructure, Mechanical Properties and Corrosion Resistance of the AA 7075-T6 Aluminum Alloy, J. Therm. Spray Techn., 2020, 29, p 1040-1053.

    Article  Google Scholar 

  46. F.S. Silva, J. Bedoya, S. Dosta, N. Cinca, I.G. Cano, J.M. Guilemany, and A.V. Benedetti, Corrosion Characteristics of Cold Gas Spray Coatings of Reinforced Aluminum Deposited Onto Carbon Steel, Corros. Sci., 2017, 114, p 57-71.

    Article  CAS  Google Scholar 

  47. M. Couto, S. Dosta, J. Ferna´ndez, and J.M. Guilemany, Comparison of the Mechanical and Electrochemical Properties of WC-25Co Coatings Obtained by High Velocity Oxyfuel and Cold Gas Spraying, J. Therm. Spray Technol., 2014, 23(8), p 1251-1258.

    Article  CAS  Google Scholar 

  48. F.S. da Silva, N. Cinca, S. Dosta, I.G. Cano, M. Couto, J.M. Guilemany, and A.V. Benedetti, Corrosion Behavior of WC-Co Coatings Deposited by Cold Gas Spray onto AA 7075-T6, Corros. Sci., 2018, 136, p 231-243.

    Article  Google Scholar 

  49. E. McCafferty, Sequence of Steps in the Pitting of Aluminum by Chloride Ions, Corros. Sci., 2003, 45(7), p 1421-1438.

    Article  CAS  Google Scholar 

  50. E. McCafferty, Validation of Corrosion Rates Measured by the Tafel Extrapolation Method, Corros. Sci., 2005, 47(12), p 3202-3215.

    Article  CAS  Google Scholar 

  51. M. Fontana, R. Staehle, and F. Mansfeld, The Polarization Resistance Technique for Measuring Corrosion Currents, Adv. Corros. Sci. Technol., 1976, 163-262.

  52. H.T. Yang, X.H. Qu, W.J. Lin, C. Wang, D.H. Zhu, K.R. Dai, and Y.F. Zheng, In Vitro and In Vivo Studies on Zinc-Hydroxyapatite Composites as Novel Biodegradable Metal Matrix Composite for Orthopedic Applications, Acta Biomater., 2018, 71, p 200-214.

    Article  CAS  Google Scholar 

  53. G.P. Gao and L.W. Wang, A Potential and pH Inclusive Microkinetic Model for Hydrogen Reactions on Pt Surface, Chem. Catal., 2021, 1(6), p 1331-1345.

    Article  CAS  Google Scholar 

  54. D. Vojtěch, J. Kubásek, J. Serák, and P. Novák, Mechanical and Corrosion Properties of Newly Developed Biodegradable Zn-Based Alloys for Bone Fixation, Acta Biomater., 2011, 7(9), p 3515-3522.

    Article  Google Scholar 

  55. K.L. Galit, G. Jeremy, and A. Eli, The Prospects of Zinc as A Structural Material for Biodegradable Implants—A Review Paper, Metals, 2017, 7(10), p 402.

    Article  Google Scholar 

  56. Z.K. Shahrouz, H.A. Aminudin, A. Norhayati, K. Mohammed, I. Ahmad, N. Rozita, H. Waseem, and R. Norizah, Biodegradable Mg/HA/TiO2 Nanocomposites Coated with MgO and Si/MgO for Orthopedic Applications: A Study on the Corrosion, Surface Characterization, and Biocompatability, Coatings, 2017, 7(10), p 154.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52061018, 52161012), Natural Science Foundation of Jiangxi Province (No. 20192BAB216004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Long Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, ZB., Hu, XZ., Xie, YT. et al. Microstructure, Mechanical Property and Corrosion Behavior of Cold-Sprayed Zn Coatings on Mg Alloy Substrate. J Therm Spray Tech 32, 2478–2490 (2023). https://doi.org/10.1007/s11666-023-01642-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01642-x

Keywords

Navigation