Skip to main content

Microstructure and Micromechanical Properties of In situ Synthesized TiO2−x Coatings by Plasma Spraying of Bimodal Feedstocks

Abstract

Magnéli phases TiO2−x have many excellent physical and chemical properties. While the preparation process of TiO2−x is costly and complicated. In situ synthesis of TiO2−x by deoxidation of TiO2 powders coupled with the deposition of the TiO2−x coating synchronously using plasma spraying can broaden the prospects in many industrial applications. This study attempts to relate the comprehensive properties of plasma-sprayed TiO2−x coating to phase and microstructural variances induced by deoxidation of the mixing nano-(n-TiO2) and submicron (m-TiO2) sprayable feedstocks. The phase constitution, microstructure, and micromechanical properties of the as-sprayed TiO2−x coatings are experimentally and systemically investigated. With the increase in m-TiO2 particles, more rutile phase transfers into Magnéli phases during coating preparation. The microstructure of coatings is mainly composed of two meta structures, including the fully melted region and the partially melted region. The measured data of the porosity, microhardness, elastic modulus, and fracture toughness follow Weibull distribution, and the micromechanical properties present a characteristic of bimodal distribution. With increasing m-TiO2 particles, the microhardness and elastic modulus of coatings decrease, whereas the fracture toughness greatly increases. In general, the comprehensive properties of the as-sprayed TiO2−x coating can be effectively improved by optimizing the feedstock structure and composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. H. Li, T. Zhou, S. Hu, Z. Su, and Y. Yan, Ti6O11 Nanofiber: A New Material with Robust Switching Characteristic for Memories, Chem. Eng. J., 2017, 312, p 328-335.

    CAS  Article  Google Scholar 

  2. F.C. Walsh and R. Wills, The Continuing Development of Magnéli Phase Titanium Sub-oxides and Ebonex Electrodes, Electrochim. Acta, 2010, 55, p 6342-6351.

    CAS  Article  Google Scholar 

  3. H.X.L. Wang, Carbon-Coated Magnéli-Phase TinO2n−1 Nanobelts as Anodes for Li-ion Batteries and Hybrid Electrochemical Cells, Appl. Phys. Lett., 2010, 97, p 862.

    Google Scholar 

  4. X. Li, A.L. Zhu, Q. Wei, H. Wang, R. Hui, Z. Lei, and J. Zhang, Magneli Phase Ti4O7 electrode for Oxygen Reduction Reaction and Its Implication for Zinc-Air rechargeable batteries, Electrochim. Acta, 2010, 55, p 5891-5898.

    CAS  Article  Google Scholar 

  5. K. Wen-Hong, Erratum: Formation Enhancement of a Lead/Acid Battery Positive Plate by Barium Metaplumbate and Ebonex, J. Electrochem. Soc., 1997, 144, p 1907-1911.

    Article  Google Scholar 

  6. T. Chao, D. Zhou, and Q. Zhang, Synthesis and Characterization of Magneli Phases: Reduction of TiO2 in a Decomposed NH3 Atmosphere, Mater. Lett., 2012, 79, p 42-44.

    Article  Google Scholar 

  7. H. Lee, J. Han Su, and R. Chidambaram Seshadri, Thermoelectric Properties of In-situ Plasma Spray Synthesized Sub-stoichiometry TiO2−x, Sci. Rep., 2016, 6, p 36581.

    Article  Google Scholar 

  8. F.R. Caliari, H. Lee, and S. Sampath, Optimization of All-Oxide 2D Layered Thermoelectric Device Fabricated by Plasma Spray, J. Therm. Spray Technol., 2020, 29, p 1815-1826.

    CAS  Article  Google Scholar 

  9. J.R. Colmenares-Angulo, V. Cannillo, L. Lusvarghi, A. Sola, and S. Sampath, Role of Process Type and Process Conditions on Phase Content and Physical Properties of thermal Sprayed TiO2 Coatings, J. Mater. Sci., 2009, 44, p 2276-2287.

    CAS  Article  Google Scholar 

  10. J. Zhang, J. He, Y. Dong, and X. Li, Microstructure Characteristics of Al2O3-13wt.% TiO2 Coating Plasma Spray Deposited with Nanocrystalline Powders, J. Mater. Process. Technol., 2008, 197, p 31-35.

    CAS  Article  Google Scholar 

  11. M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, and T.D. Xiao, Development and Implementation of Plasma Sprayed Nanostructured Ceramic Coatings, Surf. Coat. Technol., 2001, 146, p 48-54.

    Article  Google Scholar 

  12. D. Goberman, Y.H. Sohn, L. Shaw, E. Jordan, and M. Gell, Microstructure Development of Al2O3-13wt.% TiO2 Plasma Sprayed Coatings Derived from Nanocrystalline Powders, Acta Materialia, 2002, 50, p 1141-1152.

    CAS  Article  Google Scholar 

  13. M.J. Ghazali, S.M. Forghani, N. Hassanuddin, A. Muchtar, and A.R. Daud, Comparative Wear Study of Plasma Sprayed TiO2 and Al2O3-TiO2 on Mild Steels, Tribol. Int., 2016, 93, p 681-686.

    CAS  Article  Google Scholar 

  14. E.P. Song, J. Ahn, S. Lee, and N.J. Kim, Microstructure and Wear Resistance of Nanostructured Al2O3-8wt.%TiO2 Coatings Plasma-Sprayed with Nanopowders, Surf. Coat. Technol., 2006, 201, p 1309-1315.

    CAS  Article  Google Scholar 

  15. E. Klyatskina, E. Rayón, G. Darut, M.D. Salvador, E. Sánchez, and G. Montavon, A study of the Influence of TiO2 Addition in Al2O3 Coatings Sprayed by Suspension Plasma Spray, Surf. Coat. Technol., 2015, 278, p 25-29. https://doi.org/10.1016/j.surfcoat.2015.07.029

    CAS  Article  Google Scholar 

  16. N. Ma, L. Guo, Z. Cheng, H. Wu, F. Ye, and K. Zhang, Improvement on Mechanical Properties and Wear Resistance of HVOF Sprayed WC-12Co Coatings by Optimizing Feedstock Structure, Appl. Surf. Sci., 2014, 320, p 364-371.

    CAS  Article  Google Scholar 

  17. K. Hansol, P. Hyungkwon, and L. Changhee, Roles of Particle Size Distribution in Bimodal Feedstocks on the Deposition Behavior and Film Properties in Vacuum Kinetic Spraying, J. Therm. Spray Technol., 2018, 27, p 1-13.

    Article  Google Scholar 

  18. L. Hwasoo, S.R. Chidambaram, P. Zdenek, and S. Sanjay, Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2−x Deposits, J. Therm. Spray Technol., 2018, 27, p 968-982.

    Article  Google Scholar 

  19. A.G. Evans and T.R. Wilshaw, Quasi-Static Solid Particle damage in Brittle Solids—I Observations Analysis and Implications, Acta Metall., 1976, 24, p 939-956.

    CAS  Article  Google Scholar 

  20. Y. An, S. Li, G. Hou, X. Zhao, H. Zhou, and J. Chen, Mechanical and Tribological Properties of Nano/Micro Composite Alumina Coatings Fabricated by Atmospheric Plasma Spraying, Ceram. Int., 2017, 43, p 5319-5328.

    CAS  Article  Google Scholar 

  21. H. Malik, S. Sarkar, S. Mohanty, and K. Carlson, Modelling and Synthesis of Magnéli Phases in Ordered Titanium Oxide Nanotubes with Preserved Morphology, Sci. Rep., 2020, 10, p 8050.

    CAS  Article  Google Scholar 

  22. M. Lazzeri, A. Vittadini, and A. Selloni, Erratum: Structure and Energetics of Stoichiometric TiO2 Anatase Surface, Phys. Rev. B, 2002, 65, p 119901.

    Article  Google Scholar 

  23. B. Huang, J. Wang, and P. Yang, Self-Doped TiO2−x Nanowires with Enhanced Photocatalytic Activity: Facile Synthesis and Effects of the Ti3+, Appl. Surf. Sci. A J. Devot. Propert. Interfaces Relat. Syn. Behav. Mater., 2015, 356, p 391-398.

    Google Scholar 

  24. A.A. Gusev, E.G. Avvakumov, and O.B. Vinokurova, Synthesis of Ti4O7 Magneli Phase Using Mechanical Activation, Sci. Sinter., 2003, 35, p 141-145.

    CAS  Article  Google Scholar 

  25. J. David, G. Trolliard, and A. Matre, Transmission Electron Microscopy Study of the Reaction Mechanisms Involved in the Carbothermal Reduction of Anatase, Acta Mater., 2013, 61, p 5414-5428.

    CAS  Article  Google Scholar 

  26. Y. Bai, J.J. Tang, K. Liu, C.H. Ding, J.F. Yang, and Z.H. Han, Effect of Particle in-Flight Behavior on the Composition of Thermal Barrier Coatings, Appl. Surf. Sci., 2013, 286, p 184-191.

    Article  Google Scholar 

  27. Q. Liu, Y. Wang, Y. Bai, Z.D. Li, and Y.S. Ma, Formation Mechanism of Gas Phase in Supersonic Atmospheric Plasma Sprayed NiCr-Cr3C2 Cermet Coatings, Surf. Coat. Technol., 2020, 397, p 126052.

    CAS  Article  Google Scholar 

  28. H. Yu, R.X. Guo, H.T. Xia, F. Yan, and Y.B. Zhang, Study on the Effect of WC Size on the Thermal Expansion Coefficient of WC/Cu Composites, Appl. Mech. Mater., 2013, 275-277, p 1597-1600.

    Article  Google Scholar 

  29. Q. Qi, Y. Liu, L. Wang, H. Zhang, J. Huang, and Z. Huang, One New Route to Optimize the Oxidation Resistance of TiC/hastelloy (Ni-Based Alloy) Composites Applied for Intermediate Temperature Solid Oxide Fuel Cell Interconnect by Increasing Graphite Particle Size, J. Power Sources, 2017, 362, p 57-63.

    CAS  Article  Google Scholar 

  30. Z. Yin, S. Tao, X. Zhou, and C. Ding, Particle In-Flight Behavior and Its Influence on the Microstructure and Mechanical Properties of Plasma-Sprayed Al2O3 Coatings, J. Eur. Ceram. Soc., 2008, 28, p 1143-1148.

    CAS  Article  Google Scholar 

  31. Y. Wang, F. Zhou, L. Wang, S. Liu, and W. Yue, Tribological Property of Plasma-Sprayed Al2O3-13wt.%TiO2 Coatings onto Resin-Based Composites, Appl. Surf. Sci., 2018, 431, p 75-80.

    Article  Google Scholar 

  32. G.J. Yang, P.H. Gao, C.X. Li, and C.J. Li, Simultaneous Strengthening and Toughening Effects in WC-(nanoWC-Co), Scripta Mater., 2012, 66, p 777-780.

    CAS  Article  Google Scholar 

  33. S.L.A. Prasad, M.M. Mayuram, and R. Krishamurthy, Response of Plasma-Sprayed Alumina–Titania Composites to static Indentation Process, Mater. Lett., 1999, 41, p 234-240.

    Article  Google Scholar 

Download references

Acknowledgments

The paper was financially supported by NSFC (52122508, 52075543, 52130509), 173 project (2021-JJ-0175), and 145 Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozheng Ma or Fenghua Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Ma, G., Su, F. et al. Microstructure and Micromechanical Properties of In situ Synthesized TiO2−x Coatings by Plasma Spraying of Bimodal Feedstocks. J Therm Spray Tech (2022). https://doi.org/10.1007/s11666-022-01449-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11666-022-01449-2

Keywords

  • magnéli phases
  • micromechanical property
  • plasma spraying
  • TiO2−x coating
  • weibull distribution