Skip to main content
Log in

Effect of CeO2 Addition on Grain Refinement and Mechanical Properties of Stellite-6 Coating Fabricated by Laser Cladding

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

To improve the wear resistance of the crankshaft, co-based coatings with different additions of CeO2 (0, 1, 2, 3, 4 wt%) were successfully prepared by laser-cladding technology on the surface of 42CrMo. The effects of CeO2 addition on the microstructure, microhardness, and wear properties of the coatings were investigated by scanning electron microscopy, energy dispersive spectrometry, x-ray diffraction, microhardness testing, and friction testing. The results show that CeO2 could obviously reduce the dilution rate of coating and avoid the elements in Stellite-6 powder being diluted into the substrate. CeO2 had little effect on the phase composition of the coating, while the coating was mainly composed of γ-Co, M23C6, and M7C3. With the addition of appropriate CeO2 content, it was found that CeO2 played a critical role in refining the grains in the coating, and reducing the residual stress in the coating, which reduced its crack sensitivity. CeO2 can strengthen the internal structure of the coating and improve its microhardness and wear resistance. Especially, while the content of CeO2 powder was 3 wt%, the wear rate was only one-half that of the pure Stellite-6 coating and the wear morphology was the smoothest. The optimal addition of CeO2 in the Stellite-6 coating was 3 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Qi, Y. Yang, G.F. Hu, X. Lu and J.D. Li, Thermal Expansion Control Of Composite Coatings on 42CrMo by Laser Cladding, Surf. Coat. Technol., 2020, 397, p 15983.

    Article  Google Scholar 

  2. Z.W. Zhu, Y.S. Lu, Q.J. Xie, D.Y. Li and N. Gao, Mechanical Properties and Dynamic Constitutive Model of 42CrMo Steel, Mater. Design., 2017, 119, p 171-179.

    Article  CAS  Google Scholar 

  3. J.Y. Tian, P. Xu, J.H. Chen and Q.B. Liu, Microstructure and Phase Transformation Behaviour of a Fe/Mn/Si/Cr/Ni Alloy Coating by Laser Cladding, Opt. Laser Eng., 2019, 122, p 97-104.

    Article  Google Scholar 

  4. Y.W. Xue, X.L. Shi, Q.P. Huang, K.P. Zhang and C.H. Wu, Effects of Groove-Textured Surfaces with Sn-Ag-Cu and MXene-Ti3C2 on Tribological Performance of CSS-42L Bearing Steel in Solid-Liquid Composite Lubrication System, Tribol. Int., 2021, 161, p 107099.

    Article  CAS  Google Scholar 

  5. Q. Liu, B.Q. Huo and Y.S. Liu, A Study on Diesel Engine Crankshaft Bearing Failure Analysis with Consideration of Bearing Lubrication, Ind. Lubr. Tribol., 2022, 74, p 118-126.

    Article  Google Scholar 

  6. C.M. Zhao, G.F. Lian, Y. Zhang et al., The Forming Control Method of Double-Layer and Multi-Track Stacking Laser Cladding Applied on crankshafts restoration, JOM-US, 2021, 73, p 4289-4298.

    Article  Google Scholar 

  7. M. Zhang, X.H. Wang, S.S. Liu and K.L. Qu, Microstructure and High-Temperature Properties of Fe-Ti-Cr-Mo-B-C-Y2O3 Laser Cladding Coating, J. Rare. Earth., 2020, 38, p 683-688.

    Article  CAS  Google Scholar 

  8. O.S. Adesina, G.A. Farotade and P.I. Popoola, Synthesis, Parametric and Tribological Study of Laser Clad Co-Ni Binary Coatings on Titanium Alloy, Mater. Res. Express, 2019, 6, p 056512.

    Article  CAS  Google Scholar 

  9. M.Y. Zhang, M. Li, S.F. Wang, J. Chi, L.S. Ren, M. Fang and C. Zhou, Enhanced Wear Resistance and New Insight into Microstructure Evolution of In-Situ (Ti, Nb)C Reinforced 316 L Stainless Steel Matrix Prepared Via Laser Cladding, Opt. Laser. Eng., 2020, 128, p 106043.

    Article  Google Scholar 

  10. N.T.H. Pham and V.T. Nguyen, Behaviour of TiC Particles on the Co50-Based Coatings by Laser Cladding: Morphological Characteristics and Growth Mechanism, Adv. Mater. Sci. Eng., 2020, 2020, p 8462607.

    Article  Google Scholar 

  11. X.M. Quan and L. Ding, Microstructure and Property of In-Situ TiC Reinforced Co-Based Composite Coatings by Laser Cladding, Sci. Adv. Mater., 2019, 11, p 1798-1805.

    Article  CAS  Google Scholar 

  12. A. Mishchenko and A. Scotti, Welding Thermal Stress Diagrams as a Means of Assessing Material Proneness to Residual Stresses, J. Mater. Sci., 2020, 56, p 1694-1712.

    Article  Google Scholar 

  13. N. Thawari, C. Gulipalli, A. Chandak and T.V.K. Gupta, Influence of Laser Cladding Parameters on Distortion, Thermal History and Melt Pool Behaviour in Multi-Layer Deposition of Stellite 6: In-Situ Measurement, J. Alloy. Compd., 2021, 860, p 157894.

    Article  CAS  Google Scholar 

  14. X. He, D.J. Kong and R.G. Song, Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings, Materials, 2018, 11, p 198.

    Article  Google Scholar 

  15. A. Weisheit, S.K. Rittinghaus, A. Dutta and J.D. Majumdra, Studies on the Effect of Composition and Pre-Heating on Microstructure and Mechanical Properties of Direct Laser Clad Titanium Aluminide, Opt. Laser. Eng., 2020, 131, p 106041.

    Article  Google Scholar 

  16. K. Huo, J.Z. Zhou, F.Z. Dai and J.L. Xu, Particle Distribution and Microstructure of IN718/WC Composite Coating Fabricated by Electromagnetic Compound Field-Assisted Laser Cladding, Appl. Surf. Sci., 2021, 545, p 149078.

    Article  CAS  Google Scholar 

  17. O. Ertugrul, T.M. Enrici, H. Paydas, E. Saggionetto, F. Boschini and A. Mertens, Laser Cladding of TiC Reinforced 316L Stainless Steel Composites: Feedstock Powder Preparation and Microstructural Evaluation, Powder. Technol., 2020, 375, p 384-396.

    Article  CAS  Google Scholar 

  18. D. Bartkowski, A. Bartkowska, A. Piasecki and P. Jurci, Influence of Laser Cladding Parameters on Microstructure, Microhardness, Chemical Composition, Wear and Corrosion Resistance of Fe-B Composite Coatings Reinforced with B4C and Si Particles, Coatings, 2020, 10, p 809.

    Article  CAS  Google Scholar 

  19. H.Y. Wang, D.W. Zuo, X.F. Li, K.M. Chen and M.M. Huang, Effects of CeO2 Nanoparticles on Microstructure and Properties of Laser Cladded NiCoCrAlY Coatings, J. Rare. Earth., 2020, 28, p 246-250.

    Article  Google Scholar 

  20. Y.N. Liu, R.L. Sun, W. Niu, T.G. Zhang and Y.W. Lei, Effects of CeO2 on Microstructure and Properties of TiC/Ti2Ni Reinforced Ti-Based Laser Cladding Composite Coatings, Opt. Laser. Eng., 2019, 120, p 84-94.

    Article  Google Scholar 

  21. Y.C. Cai, Z. Luo, Y. Chen and S.S. Ao, Influence of CeO2 on Tribological Behaviour of TiC/Fe-Based Composite Coating, Surf. Eng., 2017, 33, p 936-943.

    Article  CAS  Google Scholar 

  22. C.L. Wang, Y. Gao, R. Wang, D.Q. Wei, M. Cai and Y.K. Fu, Microstructure of Laser-Clad Ni60 Cladding Layers Added with Different Amounts of Rare-Earth Oxides on 6063 Al Alloys, J. Alloy. Compd., 2018, 770, p 1099-1107.

    Article  Google Scholar 

  23. S. Balaguru, M. Abid and M. Gupta, Investigations on Different Hardfacing Processes for High Temperature Applications of Ni-Cr-B-Si Alloy Hardfaced on Austenitic Stainless Steel Components, J. Mater. Res. Technol., 2020, 9, p 10062-10072.

    Article  CAS  Google Scholar 

  24. Q.L. Zhang, L.J. Wu, H.S. Zou, B. Li, G. Zhang, J.Y. Sun, J.J. Wang and J.H. Yao, Correlation Between Microstructural Characteristics and Cavitation Resistance Of Stellite-6 Coatings on 17-4 PH Stainless Steel Prepared with Supersonic Laser Deposition and Laser Cladding, J. Alloy. Compd., 2021, 860, p 158417.

    Article  CAS  Google Scholar 

  25. M. Alizadeh-Sh, S.P.H. Marashi, E. Ranjbarnodeh, R. Shoja-Razavi and J.P. Oliveira, Prediction of Solidification Cracking by an Empirical-Statistical Analysis for Laser Cladding of Inconel 718 Powder on a Non-Weldable Substrate, Opt. Laser. Technol., 2020, 128, p 106244.

    Article  CAS  Google Scholar 

  26. G.Y. Han, Y.F. Zhang, B. Wang and Z.X. Zhang, Effect of the Addition of CeO2 on the Microstructure and Corrosion of In-Situ TiB/Ti Composite Coatings Prepared by Laser Cladding Technology, Int. J. Electrochem. Sci., 2021, 16, p 210255.

    Article  CAS  Google Scholar 

  27. Z.Q. Zhang, F. Yang, H.W. Zhang, T.G. Zhang and H. Wang, Microstructure and Element Distribution of Laser Cladding TiCx-Reinforced CrTi4-Based Composite Coating with CeO2/Ce2O3, Mater. Lett., 2021, 283, p 128772.

    Article  CAS  Google Scholar 

  28. K.L. Wang, Q.B. Zhang, M.L. Sun, X.G. Wei and Y.M. Zhu, Microstructure and Corrosion Resistance of Laser Clad Coatings with Rare Earth Elements, Corros. Sci., 2001, 43, p 255-267.

    Article  CAS  Google Scholar 

  29. Y. Chen, Y.J. Chao, Z. Luo, Y.C. Cai and C.Y. Ma, Microstructure and Wear Resistance of Co-Based/Cr3C2 Coatings with CeO2, Surf. Eng., 2018, 34, p 588-595.

    Article  CAS  Google Scholar 

  30. A.L. Gorunov, Investigation of M7C3, M23C6 and M3C Carbides Synthesized on Austenitic Stainless Steel and Carbon Fibers Using Laser Metal Deposition, Surf. Coat. Technol., 2020, 40, p 126294.

    Article  Google Scholar 

  31. C. Fan, M.C. Chen, C.M. Chang and W.T. Wu, Microstructure Change Caused by (Cr, Fe)(23)C-6 Carbides in High Chromium Fe-Cr-C Hardfacing Alloys, Surf. Coat. Technol., 2006, 201, p 908-912.

    Article  CAS  Google Scholar 

  32. K. Hirota, K. Mitani, M. Yoshinaka and O. Yamaguchi, Simultaneous Synthesis and Consolidation of Chromium Carbides (Cr3C2, Cr7C3 and Cr23C6) by Pulsed Electric-Current Pressure Sintering, Mat. Sci. Eng. A-Struct., 2005, 399, p 154-160.

    Article  Google Scholar 

  33. W.L. Zhou, H.P. Li, Z.C. Li, X.B. Zhu and L.F. He, Bonding of Zr44Ti11Cu10Ni10Be25 Bulk Metallic Glass and AZ31B Magnesium Alloy by Hot Staking Extrusion, Vacuum, 2019, 166, p 240-247.

    Article  CAS  Google Scholar 

  34. Y. Shen and C. Wang, In Situ Observation of Martensite Lath Growth Behaviors in the Coarse Grained Heat-Affected Zone of 1.25Cr-0.5Mo Heat-Resistant Steel During Simulated Welding, Metall. Mater. Trans. A, 2019, 50(11), p 4955-4960. https://doi.org/10.1007/s11661-019-05420-9

    Article  CAS  Google Scholar 

  35. C. Cui, M.P. Wu, X.J. Miao, Y.L. Gong and Z.S. Zhao, The Effect of Laser Energy Density on the Geometric Characteristics, Microstructure and Corrosion Resistance of Co-Based Coatings by Laser Cladding, J. Mater. Res. Technol., 2021, 15, p 2405-2418.

    Article  CAS  Google Scholar 

  36. C. Cui, M.P. Wu, R. He, Y.L. Gong and X.J. Miao, Understanding Stellite-6 Coating Prepared by Laser Cladding: Convection and Columnar-to-Equiaxed Transition, Opt. Laser. Technol., 2022, 149, p 107885.

    Article  Google Scholar 

  37. H. Lv, X.D. Li, Z.J. Li, W.X. Wang, K. Yang, F. Li and H.L. Xie, Investigation on the Columnar-to-Equiaxed Transition During Laser Cladding of IN718 Alloy, J. Manuf. Process, 2021, 67, p 63-76.

    Article  Google Scholar 

  38. T. Durejko and M. Łazińska, Characterization of Cobalt-Based Stellite 6 Alloy Coating Fabricated by Laser-Engineered Net Shaping (LENS), Materials, 2021, 14(23), p 7442. https://doi.org/10.3390/ma14237442

    Article  CAS  Google Scholar 

  39. F.X. Ye, W.X. Shao, W. Zhang, X.C. Ye and Y.X. Xie, Microstructure and Properties of CeO2 Doped Ni-Based Coatings Prepared by Laser Cladding, Sci. Adv. Mater., 2020, 12, p 1718-1725.

    CAS  Google Scholar 

  40. C. Cui, M.P. Wu, X.J. Miao, Z.S. Zhao and Y.L. Gong, Microstructure and Corrosion Behavior of CeO2/FeCoNiCrMo Highentropy Alloy Coating Prepared by Laser Cladding, J. Alloy. Compd., 2021, 890, p 161826.

    Article  Google Scholar 

  41. G.A. Bufetova, S.Y. Rusanov, V.F. Seregin, Y.N. Pyrkov and V.B. Tsvetkov, Temperature and Emissivity Measurements at the Sapphire Single Crystal Fiber Growth Process, J. Cryst. Growth, 2017, 480, p 85-89.

    Article  CAS  Google Scholar 

  42. J. Cheon and S.J. Na, Prediction of Welding Residual Stress with Real-Time Phase Transformation by CFD Thermal Analysis, Int. J. Mech. Sci., 2017, 131, p 37-51.

    Article  Google Scholar 

  43. N. Thawari, C. Gullipalli, J.K. Katiyar and T.V.K. Gupta, Influence of Buffer Layer on Surface and Tribomechanical Properties of Laser Cladded Stellite 6, Mater. Sci. Eng. B, 2021, 263, 114799.

    Article  CAS  Google Scholar 

  44. H.X. Deng, H.J. Shi and S. Tsuruoka, Influence of Coating Thickness and Temperature on Mechanical Properties of Steel Deposited with Co-Based Alloy Hardfacing Coating, Surf. Coat. Technol., 2010, 204, p 3927-3934.

    Article  CAS  Google Scholar 

  45. S.A.A. Dilawary, A. Motallebzadeh, A.H. Paksoy, M. Afzal, E. Atar and H. Cimenoglu, Influence of Laser Surface Melting on the Characteristics of Stellite 12 Plasma Transferred Arc Hardfacing Deposit, Surf. Coat. Technol., 2017, 317, p 110-116.

    Article  CAS  Google Scholar 

  46. R. Liu, X.J. Wu, S. Kapoor, M.X. Yao and R. Collier, Effects of Temperature on the Hardness and Wear Resistance of High-Tungsten Stellite Alloys, Metall. Mater. Trans. A, 2015, 46A, p 587-599.

    Article  Google Scholar 

  47. Y. Oh, C.H. Han, M. Wang, Y.B. Chun and H.N. Han, Effect of Rare Earth Oxide Addition on Microstructure and Mechanical Properties of Ni-Based Alloy, J. Alloy. Compd., 2021, 853, p 156980.

    Article  CAS  Google Scholar 

  48. Y. He, K. Li, I.S. Cho, I.G. Park and K. Shin, Microstructural Refinement of Al-Si Alloy Upon Ultrasonic NanoCrystalline Surface Modification Treatment, J. Nanosci. Nanotechnol., 2014, 14, p 8729-8734.

    Article  CAS  Google Scholar 

  49. G. Straffelini and A. Molinari, Mild Sliding Wear of Fe–0.2%C, Ti–6%Al–4%V and Al-7072: A Comparative Study, Tribol. Lett., 2011, 41(1), p 227-238. https://doi.org/10.1007/s11249-010-9705-2

    Article  CAS  Google Scholar 

  50. J.N. Li, C.Z. Chen and C.F. Zhang, Effect of Nano-CeO2 on Microstructure Properties of TiC/TiN+nTi(CN) Reinforced Composite Coating, B. Mater. Sci., 2012, 35, p 399-404.

    Article  CAS  Google Scholar 

  51. Q.X. Yang, X.J. Ren, L.G. Liu, D. Li and H.F. Dong, Mechanism of Cracking Resistance of Hardfacing Specimens of Steel 5CrNiMo Improved by Rare Earth Oxide, J. Rare Earth., 2006, 24, p 471-478.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Jiangsu Province Mechanical and Electrical Products Recycling Technology Key Construction Laboratory Open Fund Project (No. RRME201902), the Fundamental Research Funds for the Central Universities (No. JUSRP121041), National Natural Science Foundation of China (52105346).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meiping Wu or Xiaojin Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Wu, M., He, R. et al. Effect of CeO2 Addition on Grain Refinement and Mechanical Properties of Stellite-6 Coating Fabricated by Laser Cladding. J Therm Spray Tech 31, 2621–2634 (2022). https://doi.org/10.1007/s11666-022-01429-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01429-6

Keywords

Navigation