Skip to main content
Log in

Microstructural Characterization and Tribological Properties of Atmospheric Plasma Sprayed High Entropy Alloy Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Two different types of high entropy alloy thick coatings (HEAs), namely, AlCrCoFeNiTi and FeCrCoNiW0.3 + 5 at.% C were fabricated using atmospheric plasma spray (APS) on stellite substrate and compared for their various properties. Fine spherical powder particles used for fabrication resulted in homogeneous and surface defect-free (like cracks or voids) coatings with a negligible amount of porosity. The surface roughness and dilution level of both the coatings were found to be 8.56 µm, 7.23 µm, and 3.71%, 3.55% for AlCrCoFeNiTi and FeCrCoNiW0.3 + 5 at.% C alloy, respectively, demonstrating a strong metallurgical bonding between the coatings and substrate. A lamellar microstructure along with precipitates was observed from the microstructural investigation of both coatings. The AlCrCoFeNiTi coating comprised of two BCC phases (A2 and B2) and FeCrCoNiW0.3 + 5 at.% coating consisted of FCC phase with Cr and W rich carbides. The microhardness of AlCrCoFeNiTi alloy coating exhibited 2.16 times higher hardness (761 ± 14 HV0.2) and 4.28 times lower wear rate (2.8 × 10−7 mm3/ Nm) than the substrate. BCC phases, good metallurgical bonding between the matrix and substrate, and defect-free microstructure attributed to the improved wear performance of the aforementioned alloy coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299-303.

    Article  CAS  Google Scholar 

  2. G.J. Zhang, Q.W. Tian, K.X. Yin, S.Q. Niu, M.H. Wu, W.W. Wang, Y.N. Wang and J.C. Huang, Effect of Fe on Microstructure and Properties of AlCoCrFexNi (x = 1.5, 2.5) High Entropy Alloy Coatings Prepared by Laser Cladding, Intermetallics, 2020, 119, p 106722. https://doi.org/10.1016/j.intermet.2020.106722

    Article  CAS  Google Scholar 

  3. Z. Guo, A. Zhang, J. Han and J. Meng, Microstructure, Mechanical and Tribological Properties of CoCrFeNiMn High Entropy Alloy Matrix Composites with Addition of Cr3C2, Tribol. Int., 2020, 151, p 106436.

    Article  CAS  Google Scholar 

  4. H. Wang, Q. Liu, Y. Guo and H. Lan, MoFe1.5CrTiWAlNbx Refractory High-Entropy Alloy Coating Fabricated by Laser Cladding, Intermetallics, 2019, 115, p 106613. https://doi.org/10.1016/j.intermet.2019.106613

    Article  CAS  Google Scholar 

  5. J.-W. Yeh, Y.-L. Chen, S.-J. Lin and S.-K. Chen, High-Entropy Alloys-A New Era of Exploitation, Mater. Sci. Forum, 2007, 560, p 1-9.

    Article  CAS  Google Scholar 

  6. R Budynas, K Nisbett, (2019) Mechanical Engineering Design, second ed., McGraw-Hill.

  7. X. Gao, L. Yiping, B. Zhang, N. Liang, W. Guanzhong, G. Sha, J. Liu and Y. Zhao, Microstructural Origins of High Strength and High Ductility in an AlCoCrFeNi2.1 Eutectic High-Entropy Alloy, Act. Mater., 2017, 141, p 59-66. https://doi.org/10.1016/j.actamat.2017.07.041

    Article  CAS  Google Scholar 

  8. S. Guan, K. Solberg, D. Wan, F. Berto, T. Welo, T.M. Yue and K.C. Chan, Formation of Fully Equiaxed Grain Microstructure in Additively Manufactured AlCoCrFeNiTi0 5 High Entropy Alloy, Mater. Des., 2019, 184, p 108202.

    Article  CAS  Google Scholar 

  9. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534, p 227-230.

    Article  CAS  Google Scholar 

  10. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An and Z.P. Lu, A Precipitation-Hardened High-Entropy Alloy with Outstanding Tensile Properties, Act. Mater., 2016, 102, p 187-196.

    Article  CAS  Google Scholar 

  11. Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang and H. Cai, High-Content Ductile Coherent Nanoprecipitates Achieve Ultrastrong High-Entropy Alloys, Nat. Commun., 2018, 9, p 40-63.

    CAS  Google Scholar 

  12. B. Zhang, Y. Zhang and S.M. Guo, A Thermodynamic Study of Corrosion Behaviors for CoCrFeNi-Based High-Entropy Alloys, J. Mater. Sci., 2018, 53, p 14729-14738.

    Article  CAS  Google Scholar 

  13. A. Meghwal, A. Anupam, B.S. Murty et al., Thermal Spray High-Entropy Alloy Coatings: A Review, J. Therm. Spray Tech., 2020, 29, p 857-893.

    Article  CAS  Google Scholar 

  14. M.G. Poletti, G. Fiore, F. Gili, D. Mangherini and L. Battezzati, Development of a New High Entropy Alloy for Wear Resistance: FeCoCrNiW0. 3 and FeCoCrNiW0. 3 + 5 at.% of C, Mater. Des., 2017, 115, p 247-254.

    Article  CAS  Google Scholar 

  15. R. Zhou, G. Chen, B. Liu, J. Wang, L. Han and Y. Liu, Microstructures and Wear Behaviour of (FeCoCrNi)1–x(WC)x High Entropy Alloy Composites, Int. J. Refract. Hard Met., 2018, 75, p 56-62.

    Article  CAS  Google Scholar 

  16. D.Y. Lin, N.N. Zhang, B. He, G.W. Zhang, Y. Zhang and D.Y. Li, Tribological Properties of FeCoCrNiAlBx High-Entropy Alloys Coating Prepared by Laser Cladding, J. Iron Steel Res. Int., 2017, 24(2), p 184-189.

    Article  Google Scholar 

  17. M. Xue, X. Mao and Y. Lv, Comparison of Micro-nano FeCoNiCrAl and FeCoNiCrMn Coatings Prepared from Mechanical Alloyed High-entropy Alloy Powders, J. Therm. Spray Tech., 2021, 30, p 1666-1678.

    Article  CAS  Google Scholar 

  18. Y. Yu, J. Wang, J.S. Li, H.C. Kou and W.M. Liu, Characterization of BCC Phases in AlCoCrFeNiTix High Entropy Alloys, Mater. Lett., 2015, 138, p 78-80.

    Article  CAS  Google Scholar 

  19. J. Liu, H. Liu, P. Chen and J. Hao, Microstructural Characterization and Corrosion Behaviour of AlCoCrFeNiTix High-Entropy Alloy Coatings Fabricated by Laser Cladding, Surf. Coat. Technol., 2019, 361, p 63-74.

    Article  CAS  Google Scholar 

  20. H. Liu, J. Liu, X. Li, P. Chen, H. Yang and J. Hao, Effect of Heat Treatment on Phase Stability and Wear Behavior of Laser Clad AlCoCrFeNiTi0.8 High-Entropy Alloy Coatings, Surf. Coat. Technol., 2020, 392, p 125758. https://doi.org/10.1016/j.surfcoat.2020.125758

    Article  CAS  Google Scholar 

  21. Y.J. Zhou, Y. Zhang, Y.L. Wang and G.L. Chen, Solid Solution Alloys of AlCoCrFeNiTix with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90, p 181904.

    Article  CAS  Google Scholar 

  22. Y.J. Zhou, Y. Zhang, T.N. Kim and G.L. Chen, Microstructure Characterizations and Strengthening Mechanism of Multi-Principal Component AlCoCrFeNiTi0.5 Solid Solution Alloy with Excellent Mechanical Properties, Mater. Lett., 2008, 62(17-18), p 2673-2676. https://doi.org/10.1016/j.matlet.2008.01.011

    Article  CAS  Google Scholar 

  23. M. Löbel, T. Lindner, T. Mehner and T. Lampke, Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF, Coatings, 2017, 7(9), p 144.

    Article  CAS  Google Scholar 

  24. D. Kong, J. Guo, R. Liu, X. Zhang, Y. Song, Z. Li, F. Guo, X. Xing, X. Yuan and W. Wang, Effect of Remelting and Annealing on the Wear Resistance of AlCoCrFeNiTi0.5 High Entropy Alloys, Intermetallics, 2019, 114, p 106560. https://doi.org/10.1016/j.intermet.2019.106560

    Article  CAS  Google Scholar 

  25. V.S. Hariharan, A. Karati, T. Parida, R. John, D.A. Babu and B.S. Murty, Effect of Al Addition and Homogenization Treatment on the Magnetic Properties of CoFeMnNi High-Entropy Alloy, J. Mater. Sci., 2020, 55(36), p 17204-17217.

    Article  CAS  Google Scholar 

  26. L.H. Tian, W. Xiong, C. Liu et al., Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating, J. Mater. Eng. Perform, 2016, 25, p 5513-5521.

    Article  CAS  Google Scholar 

  27. A. Silvello, P. Cavaliere and S. Yin, Microstructural, Mechanical and Wear Behavior of HVOF and Cold-Sprayed High-Entropy Alloys (HEAs) Coatings, J. Therm. Spray Tech., 2022 https://doi.org/10.1007/s11666-021-01293-w

    Article  Google Scholar 

  28. X. Xie, F. Yin, X. Wang et al., Corrosion Resistance to Molten Zinc of a Novel Cermet Coating Deposited by Activated Combustion High-Velocity Air Fuel (AC-HVAF), J. Therm. Spray Tech., 2019, 28, p 1252-1262.

    Article  Google Scholar 

  29. X. You, S. Shi, Yi. Tan, L. Zhao, J. Zheng, X. Zhuang, Yi. Li, Q. You, P. Li and W. Long, The Evaporation Behavior of Alloy Elements During Electron Beam Smelting of Inconel 718 Alloy, Vacuum, 2019, 169, p 108920.

    Article  CAS  Google Scholar 

  30. L. Zendejas Medina, L. Riekehr and U. Jansson, Phase Formation in Magnetron Sputtered CrMnFeCoNi High Entropy Alloy, Surf. Coat. Technol., 2020, 403, p 126323. https://doi.org/10.1016/j.surfcoat.2020.126323

    Article  CAS  Google Scholar 

  31. BRO0005.6_Thermal_Spray_Brochure_EN%20(1).pdf, https://www.oerlikon.com/metco/en/products-services/coating-equipment/thermal-spray/processes/atmospheric-plasma/, Accessed 15 Apr 2021.

  32. A. Meghwal, A. Anupam, V. Luzin, C. Schulz, B.S. Colin Hall, R.S. Murty, C.C. Kottada, A.S. Berndt and M. Ang, Multiscale Mechanical Performance and Corrosion Behaviour of Plasma Sprayed AlCoCrFeNi High-Entropy Alloy Coatings, J. Alloy. Compd, 2021, 854, p 157140. https://doi.org/10.1016/j.jallcom.2020.157140

    Article  CAS  Google Scholar 

  33. T. Li, Y. Liu, B. Liu, W. Guo and X. Liyou, Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes, Coatings, 2017, 7(9), p 151. https://doi.org/10.3390/coatings7090151

    Article  CAS  Google Scholar 

  34. P.R. Reinaldo and A.S.C.M. D’Oliveira, NiCrSiB Coatings Deposited by Plasma Transferred Arc on Different Steel Substrates, J. Mater. Eng. Perform., 2013, 22, p 590-597.

    Article  CAS  Google Scholar 

  35. Yu. Yuan, J. Wang, J. Li, H. Kou and W. Liu, Characterization of BCC Phases in AlCoCrFeNiTix High Entropy Alloys, Mater. Lett., 2015, 138, p 78-80.

    Article  CAS  Google Scholar 

  36. L. Salvatl, L.E. Makovsky, J.M. Stencel, F.R. Brownls and D.M. Hercules, Surface Spectroscopic Study of Tungsten-Alumina Catalysts Using X-ray Photoelectron, Ion Scattering, and Raman Spectroscopies, J. Phys. Chem., 1981, 85, p 3700-3707.

    Article  Google Scholar 

  37. J.A. Rotole and P.M.A. Sherwood, Gamma-Alumina (γ-Al2 O 3) by XPS, Surf. Sci. Spectra., 1998, 5, p 18-24.

    Article  CAS  Google Scholar 

  38. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson and R.S.C. Smart, Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 2011, 257, p 2717-2730.

    Article  CAS  Google Scholar 

  39. G.A. Bhaduri and L. Šiller, Nickel Nanoparticles Catalyse Reversible Hydration of Carbon Dioxide for Mineralization Carbon Capture and Storage, Catal. Sci. Technol., 2013, 3, p 1234-1239.

    Article  CAS  Google Scholar 

  40. P.S. Bagus, C.J. Nelin, C.R. Brundle, B.V. Crist, N. Lahiri and K.M. Rosso, combined Multiplet Theory and Experiment for the Fe 2p and 3p XPS of FeO and Fe2O3, J. Chem. Phys., 2021, 154, p 094709.

    Article  CAS  Google Scholar 

  41. C. Sarra-Bournet, B. Haberl, C. Charles and R. Boswell, Characterization of Nanocrystalline Nitrogen-Containing Titanium Oxide Obtained by N2/O2/Ar Low-Field Helicon Plasma Sputtering, J. Phys. D. Appl. Phys., 2011, 44, p 455202.

    Article  CAS  Google Scholar 

  42. N. Mei, J. Hedberg, I.O. Wallinder and E. Blomberg, Influence of Biocorona Formation on the Transformation and Dissolution of Cobalt Nanoparticles under Physiological Conditions, ACS Omega, 2019, 4(26), p 21778-21791. https://doi.org/10.1021/acsomega.9b02641

    Article  CAS  Google Scholar 

  43. N.H. Turner and A.M. Single, Determination of peak positions and areas from wide-scan XPS spectra, Surf. Interface Anal., 1990, 15, p 215-222.

    Article  CAS  Google Scholar 

  44. B. Li, D. Li, T. Mei, W. Xia and W. Zhang, Fabrication and Characterization of Boron Nitride Reinforced Ni–W Nanocomposite Coating by Electrodeposition, J. Alloy. Compd., 2019, 777, p 1234-1244.

    Article  CAS  Google Scholar 

  45. M. Kazemnejadi, Z. Sharafi and B. Mahmoudi, Magnetic Fe–Cr–Ni Oxide Alloy Nano-Belts Prepared from the Chemical Decomposition of a Stainless Steel Screw (a top-down approach): An Efficient and Cheap Catalyst for Multicomponent Reactions, J. Iran. Chem. Soc., 2020, 17, p 777-787.

    Article  CAS  Google Scholar 

  46. A. Marin, C.P. Lungu and C. Porosnicu, Influence of Gaseous Environments on Beryllium–Tungsten and Tungsten Surfaces Investigated by XPS, J. Vac. Sci. Technol. A, 2017, 35, p 021403.

    Article  CAS  Google Scholar 

  47. C. Liu, K. Shih and Y. Gao, Dechlorinating Transformation of Propachlor Through Nucleophilic Substitution by Dithionite on the Surface of Alumina, J. Soil. Sediment., 2012, 12, p 724-733.

    Article  CAS  Google Scholar 

  48. P. Benjwal, M. Kumar, P. Chamoli and K.K. Kar, Enhanced Photocatalytic Degradation of Methylene Blue and Adsorption of Arsenic (iii) by Reduced Graphene Oxide (rGO)–Metal Oxide (TiO 2/Fe 3 O 4) Based Nanocomposites, Rsc Adv., 2015, 5(89), p 73249-73260.

    Article  CAS  Google Scholar 

  49. S. Awasthi and R. Singhal, A Mathematical Study on Effect of 2-Hydroxyl Ethyl Acrylate on Controlled Drug Diffusion from Smart Hydrogels Based on Poly (acrylamide-co-hydroxy ethyl acrylate-co-acrylic acid), J. Macromol. Sci. A, 2012, 49, p 397-413.

    Article  CAS  Google Scholar 

  50. P. Hoffmann, H. Galindo, G. Zambrano, C. Rincón and P. Prieto, FTIR Studies of Tungsten Carbide in Bulk Material and Thin Film Samples, Mater. Charact., 2003, 50, p 255-259.

    Article  CAS  Google Scholar 

  51. Q.Y. Zhang, Y. Zhou, J.Q. Liu, K.M. Chen, J.G. Mo, X.H. Cui and S.Q. Wang, Wear Behavior and Mechanism of Fe-Al Intermetallic Coating Prepared by Hot-Dip Alu-Minizing and Diffusion, Metall. Mater. Trans. A, 2016, 47, p 2232-2242.

    Article  CAS  Google Scholar 

  52. T. Yener, A. Erdoğan, M.S. Gök and S. Zeytin, Nb and B Effect on Mechanical Propertiesof Ti–Al Based Intermetallic Materials, Vacuum, 2019, 169, p 108867.

    Article  CAS  Google Scholar 

  53. Xu. Shouhong, T. Nonogaki, K. Tachi, S. Sato, I. Miyata, J. Yamanaka and M. Yonese, Two Dimensional Auto-Organized Nanostructure Formation of Acid Polysaccharides on Bovine Serum Albumin Monolayer and Its Surface Tension, Stud. Surf. Sci. Catal., 2001, 132, p 889-892.

    Article  Google Scholar 

  54. H. Li, J. Li, C. Yan and D. Xiong, Microstructure and Tribological Properties of Plasma-Sprayed Al0.2Co1.5CrFeNi1.5Ti-Ag Composite Coating from 25 to 750°C, J. Mater. Eng. Perform., 2020, 29, p 1640-1649.

    Article  CAS  Google Scholar 

  55. M.A.G. Soler and F. Qu, Raman spectroscopy of iron oxide nanoparticles BT-Raman spectroscopy for nanomaterials characterization, Springer, Berlin Heidelberg, 2012, p 379-416

    Book  Google Scholar 

  56. A. Motallebzadeh, S.A.A. Dilawary, E. Atar et al., High-Temperature Oxidation of Stellite 12 Hardfacings: Effect of Mo on Characteristics of Oxide Scale, J. Mater. Eng. Perform., 2019, 28, p 463-474.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Indian Space Research Organization (ISRO) (Grant no. ISRO/RES/3/844/19-20). The authors thank the central instrumentation facility (CIF), the Indian Institute of Technology Jammu (IIT Jammu) for providing the necessary characterization facility.

Funding

This study was funded by Indian Space Research Organization (ISRO) (Grant no. ISRO/RES/3/844/19-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shiva.

Ethics declarations

Conflict of interest

Author S. Shiva has received research grants from Indian Space Research Organization (ISRO). The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Bhaduri, G.A., Manikandan, S.G.K. et al. Microstructural Characterization and Tribological Properties of Atmospheric Plasma Sprayed High Entropy Alloy Coatings. J Therm Spray Tech 31, 1956–1974 (2022). https://doi.org/10.1007/s11666-022-01422-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01422-z

Keywords

Navigation