Skip to main content
Log in

Corrosion Resistance and Passivation Behavior of CoCrFeNi-TiAl High-Entropy Alloy Coatings in Acidic Solutions

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The superior corrosion resistance of high-entropy alloys (HEA) has attracted much attention from researchers in recent years. In this study, with minor additions of passivation elements into a CoCrFeNi matrix, a (CoCrFeNi)94Ti1.5Al4.5 HEA coating was prepared by a plasma cladding method. This coating has a single FCC phase structure and uniform microstructure, which is expected to form a uniform and compact passive film on the corrosion surface. After adding Ti and Al elements, the passive film became more compact due to the decrease in the proportion of porous hydroxide, which increased the impedance of the passive film, thereby improving the corrosion resistance of the whole HEA coating. After potentiostatic polarization for 4 h, a stable passive film was formed on the (CoCrFeNi)94Ti1.5Al4.5 coating surface in a 0.5-M H2SO4 solution. The corrosion current density was only 175 nA/cm2, which was much lower than that of 304 stainless steel and pure titanium. This indicated that minor additions of Ti and Al can promote the formation of corrosion-resistant high-performance passive films without forming deleterious second phases, and that this phenomenon is more obvious in sulfuric acid solution than in hydrochloric acid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375-377, p 213-218.

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299-303.

    Article  CAS  Google Scholar 

  3. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448-511.

    Article  CAS  Google Scholar 

  4. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi and H.R. Ammar, Manufacturing Methods, Microstructural and Mechanical Properties Evolutions of High-Entropy Alloys: A Review, Met. Mater. Int., 2020, 26(8), p 1099-1133.

    Article  Google Scholar 

  5. W. Li, P. Liu and P.K. Liaw, Microstructures and Properties of High-Entropy Alloy Films and Coatings: A Review, Mater. Res. Lett., 2018, 6(4), p 199-229.

    Article  CAS  Google Scholar 

  6. W.R. Zhang, P.K. Liaw and Y. Zhang, Science and Technology in High-Entropy Alloys, Sci. China Mater., 2018, 61(1), p 2-22.

    Article  CAS  Google Scholar 

  7. D.X. Hao, N.N. Zhang, Y. Zhang and D.Y. Li, Effect of Vanadium Addition on Microstructure and Properties of Al0.5Cr0.9FeNi2.5 Multi-Principal Alloys, J. Iron Steel Res. Int., 2021, 28, p 586-596.

    Article  CAS  Google Scholar 

  8. B.Q. Jin, N.N. Zhang, Y. Zhang and D.Y. Li, Microstructure, Phase Composition and Wear Resistance of Low Valence Electron Concentration AlxCoCrFeNiSi High-Entropy Alloys Prepared by Vacuum Arc Melting, J. Iron Steel Res. Int., 2021, 28, p 181-189.

    Article  CAS  Google Scholar 

  9. W.J. Hao, R.L. Sun, W. Niu, X.L. Li, M. Gu and R.Y. Zuo, Study on Microstructure and Corrosion Resistance of CoCrFeNiSix High-Entropy Alloy Coating by Laser Cladding, Surf. Technol., 2021, 50(8), p 343-348.

    Google Scholar 

  10. Y.Z. Shi, B. Yang and P.K. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review, Metals, 2017, 7, p 43.

    Article  Google Scholar 

  11. Y. Qiu, M.A. Gibson, H.L. Fraser and N. Birbilis, Corrosion Characteristics of High Entropy Alloys, Mater. Sci. Technol., 2015, 31(10), p 1235-1243.

    Article  CAS  Google Scholar 

  12. Q. Wang, A. Amar, C.L. Jiang, H.W. Luan, S.F. Zhao, H. Zhang, G.M. Le, X. Liu, X.Y. Wang, X.S. Yang and J.F. Li, CoCrFeNiMo0.2 High Entropy Alloy by Laser Melting Deposition: Prospective Material for Low Temperature and Corrosion Resistant Applications, Intermetallics, 2020, 119, p 106727.

    Article  CAS  Google Scholar 

  13. Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen and P.K. Liaw, Corrosion of AlxCoCrFeNi High-Entropy Alloys: Al-content and Potential Scan-rate Dependent Pitting Behavior, Corros. Sci., 2017, 119(5), p 33-45.

    Article  CAS  Google Scholar 

  14. Y. Fu, C.D. Dai, H. Luo, D.Y. Li, C.W. Du and X.G. Li, The Corrosion Behavior and Film Properties of Al-Containing High-Entropy Alloys in Acidic Solutions, Appl. Surf. Sci., 2021, 506, p 149854.

    Article  Google Scholar 

  15. S.J. Zheng, Z.B. Cai, J.B. Pu, C. Zeng and L.P. Wang, Passivation Behavior of VAlTiCrSi Amorphous High-Entropy Alloy Film with a High Corrosion-Resistance in Artificial Sea Water, Appl. Surf. Sci., 2021, 542, p 148520.

    Article  CAS  Google Scholar 

  16. H.X. Cheng, Z.M. Pan, Y. Fu, X.F. Wang, Y. Wei, H. Luo and X.G. Li, Corrosion-Resistant High-Entropy Alloy Coatings: A Review, J. Electrochem. Soc., 2021, 168, p 111502.

    Article  CAS  Google Scholar 

  17. Z.L. Xu, H. Zhang, X.J. Du, Y.Z. He, H. Luo, G.S. Song, L. Mao, T.W. Zhou and L.L. Wang, Corrosion Resistance Enhancement of CoCrFeMnNi High-Entropy Alloy Fabricated by Additive Manufacturing, Corros. Sci., 2020, 177, p 108954.

    Article  CAS  Google Scholar 

  18. K. Yamanaka, H. Shiratori, M. Mori, K. Omura, T. Fujieda, K. Kuwabara and A. Chiba, Corrosion Mechanism of an Equimolar AlCoCrFeNi High-Entropy Alloy Additively Manufactured by Electron Beam Melting, npj Mater. Degrad., 2020, 4(1), p 24.

    Article  CAS  Google Scholar 

  19. S.F. Sun, H. Liu, J.B. Hao and H.F. Yang, Microstructural Evolution and Corrosion Behavior of CoCrFeNiAlxMn Dual-Phase High-Entropy Alloy Coatings Prepared by Laser Cladding, J. Alloys Compd., 2021, 886, p 161251.

    Article  CAS  Google Scholar 

  20. C. Cui, M.P. Wu, X.J. Miao, Z.S. Zhao and Y.L. Gong, Microstructure and Corrosion Behavior of CeO2/FeCoNiCrMo High-Entropy Alloy Coating Prepared by Laser Cladding, J. Alloys Compd., 2021, 890, p 161826.

    Article  Google Scholar 

  21. Y.Y. Ge, J.B. Cheng, X.Y. Wang, L. Xue, S.S. Zhu, B.S. Zhang, S. Hong, Y.P. Wu, X.C. Zhang and X.B. Liang, Formation and Properties of Superhydrophobic Al Coatings on Steel, ACS Omega, 2021, 6, p 18383-18394.

    Article  CAS  Google Scholar 

  22. H.F. Zhang, C.H. Zhang, Z.Y. Wang, X. Cui, S. Zhang and H.T. Chen, Microstructure and Corrosion Behaviour of WC/NiCrBSi Coatings by Vacuum Cladding, Mater. Sci. Technol., 2022, 38(1), p 19-29.

    Article  CAS  Google Scholar 

  23. Y. Fu, J. Li, H. Luo, C.W. Du and X.G. Li, Recent Advances on Environmental Corrosion Behavior and Mechanism of High-Entropy Alloys, J. Mater. Sci. Technol., 2021, 80, p 217-233.

    Article  Google Scholar 

  24. Y.Z. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw and B. Yang, Homogenization of AlxCoCrFeNi High-Entropy Alloys with Improved Corrosion Resistance, Corros. Sci., 2018, 133, p 120-131.

    Article  CAS  Google Scholar 

  25. Y.Y. Ge, J.B. Cheng, C. Yan, L. Xue, B.S. Zhang and X.B. Liang, Devitrification and Sliding Wear Behaviors of AlFeSi Metallic Glass Coatings, J. Mater. Res. Technol., 2021, 15, p 7022-7032.

    Article  CAS  Google Scholar 

  26. Z.Z. Niu, Y.Z. Wang, C. Geng, J. Xu and Y. Wang, Microstructural Evolution, Mechanical and Corrosion Behaviors of as-Annealed CoCrFeNiMox (x = 0, 0.2, 0.5, 0.8, 1) High Entropy Alloys, J. Alloys Compd., 2020, 820, p 153273.

    Article  CAS  Google Scholar 

  27. Z. Tang, M.C. Gao, H.Y. Diao, T.F. Yang, J.P. Liu, T.T. Zuo, Y. Zhang, Z.P. Lu, Y.Q. Cheng, Y.W. Zhang, K.A. Dahmen, P.K. Liaw and T. Egami, Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems, JOM, 2013, 65(12), p 1848-1858.

    Article  CAS  Google Scholar 

  28. P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek and R. Goodall, The Corrosion Behaviour of CoCrFeNi-x (x = Cu, Al, Sn) High Entropy Alloy Systems in Chloride Solution, Corros. Sci., 2020, 172, p 108740.

    Article  CAS  Google Scholar 

  29. C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh and H.C. Shih, Effect of the Aluminium Content of AlxCrFe1.5MnNi0.5 High-Entropy Alloys on the Corrosion Behaviour in Aqueous Environments, Corros. Sci., 2008, 50(7), p 2053-2060.

    Article  CAS  Google Scholar 

  30. J.Y. Pang, T. Xiong, X.X. Wei, Z.W. Zhua, B. Zhang, Y.T. Zhou, X.H. Shao, Q.Q. Jin, S.J. Zheng and X.L. Ma, Oxide MnCr2O4 Induced Pitting Corrosion in High Entropy Alloy CrMnFeCoNi, Materialia, 2019, 6, p 100275.

    Article  CAS  Google Scholar 

  31. Y.Z. Shi, J.K. Mo, F.Y. Zhang, B. Yang, P.K. Liaw and Y. Zhao, In-situ Visualization of Corrosion Behavior of AlxCoCrFeNi High-Entropy Alloys During Electrochemical Polarization, J. Alloys Compd., 2020, 844, p 156014.

    Article  CAS  Google Scholar 

  32. V. Firouzdor, K. Sridharan, G. Cao, M. Anderson and T.R. Allen, Corrosion of a Stainless Steel and Nickel-Based Alloys in High Temperature Supercritical Carbon Dioxide Environment, Corros. Sci., 2013, 69, p 281-291.

    Article  CAS  Google Scholar 

  33. P.D. Krell, S.X. Li and H.B. Cong, Synergistic Effect of Temperature and HCl Concentration on the Degradation of AISI 410 Stainless Steel, Corros. Sci., 2017, 122, p 41-52.

    Article  CAS  Google Scholar 

  34. J.B. Jorcin, M.E. Orazemb, N. Pebere and B. Tribollet, CPE Analysis by Local Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2006, 51, p 1473-1479.

    Article  CAS  Google Scholar 

  35. Q.T. Song and J. Xu, (TiZrNbTa)90Mo10 High-Entropy Alloy: Electrochemical Behavior and Passive Film Characterization Under Exposure to Ringer’s Solution, Corros. Sci., 2020, 167, p 108513.

    Article  CAS  Google Scholar 

  36. B. Hirschorna, M.E. Orazema, B. Tribollet, V. Vivier, I. Frateur and M. Musiani, Determination of Effective Capacitance and Film Thickness from Constant-Phase-Element Parameters, Electrochim. Acta, 2010, 55, p 6218-6227.

    Article  Google Scholar 

  37. Z.Y. Cui, L.W. Wang, H.T. Ni, W.K. Hao, C. Man, S.S. Chena, X. Wang, Z.Y. Liu and X.G. Li, Influence of Temperature on the Electrochemical and Passivation Behavior of 2507 Super Duplex Stainless Steel in Simulated Desulfurized Flue Gas Condensates, Corros. Sci., 2017, 118, p 31-48.

    Article  CAS  Google Scholar 

  38. L. Wang, C.F. Dong, C. Man, D.C. Kong, K. Xiao and X.G. Li, Enhancing the Corrosion Resistance of Selective Laser Melted 15–5PH Martensite Stainless Steel via Heat Treatment, Corros. Sci., 2020, 166, p 108427.

    Article  CAS  Google Scholar 

  39. W.R. Wang, W. Qi, L. Xie, X. Yang, J.T. Li and Y. Zhang, Microstructure and Corrosion Behavior of (CoCrFeNi)95Nb5 High-Entropy Alloy Coating Fabricated by Plasma Spraying, Materials, 2019, 12, p 694.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of Liaoning Province (No. 2019-MS-247), Liao Ning Revitalization Talents Program (XLYC1807178), Scientific Research Funding Project of the Education Department of Liaoning Province (LJKZ0117), National Natural Science Foundation of China (No. 52001216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nannan Zhang or Shuo Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, B., Ding, Q., Jin, B. et al. Corrosion Resistance and Passivation Behavior of CoCrFeNi-TiAl High-Entropy Alloy Coatings in Acidic Solutions. J Therm Spray Tech 31, 1673–1682 (2022). https://doi.org/10.1007/s11666-022-01380-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01380-6

Keywords

Navigation