Skip to main content
Log in

Cold Gas Spray Inner Diameter Coatings and Their Properties

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Due to recent developments, cold gas spraying technology can now be used to create inner diameter coatings for cylinder inner diameters > 70 mm. The present investigations focus on the process optimization and the specific properties of cold gas spray inner diameter coatings created with three different alloy steel powder variants. The cold gas spray coating properties were compared with the corresponding properties of coatings created with twin wire arc technology. The particle velocities and deposition efficiencies were measured with the aim of optimizing the process parameters. The most suitable process parameters were used to analyze the microstructure of the deposited coating in terms of porosity and interface quality. Furthermore, the hardness and adhesion strength properties of the coatings were measured. In addition, the different liners were honed, and the achievable surface roughness of each was determined. Finally, wear resistance was evaluated using ball-on-disk testing. The results reveal that with the maximum process parameters, the cold gas spray coating properties are comparable to the twin wire arc coating properties. Further investigations are necessary to determine whether cold gas spraying is a feasible alternative to the current series production process for cylinder surface coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. N. Dudareva, R.D. Enikeev and V. Ivanov, Thermal Protection of Internal Combustion Engines Pistons, Procedia Eng., 2017, 206, p 1382-1387.

    Article  CAS  Google Scholar 

  2. F. Cuenot, CO2 Emissions from New Cars and Vehicle Weight in Europe; How the EU Regulation Could Have Been Avoided and How to Reach it?, Energy Policy, 2009, 37(10), p 3832-3842.

    Article  Google Scholar 

  3. M. Hahn and A. Fischer, Characterization of Thermal Spray Coatings for Cylinder Running Surfaces of Diesel Engines, J. Therm. Spray Technol., 2010, 19(5), p 866-872.

    Article  CAS  Google Scholar 

  4. K. Kohashi, Y. Kimura, M. Murakami and Y. Drouvin, Analysis of Piston Friction in Internal Combustion Engine, SAE Int. J. Fuels Lubr., 2013, 6(3), p 589-593.

    Article  Google Scholar 

  5. R.P. Vishwakarma and K.M. Rafi, Internal Combustion Engine, Glob. Sci-Te., 2016, 8(2), p 109.

    Article  Google Scholar 

  6. D.E. Richardson, Review of Power Cylinder Friction for Diesel Engines, J. Eng. Gas Turbines Power, 2000, 122(4), p 506-519.

    Article  Google Scholar 

  7. G. Barbezat, Advanced Thermal Spray Technology and Coating for Lightweight Engine Blocks for the Automotive Industry, Surf. Coat. Technol., 2005, 200(5-6), p 1990-1993.

    Article  CAS  Google Scholar 

  8. B. Gérard, Application of Thermal Spraying in the Automobile Industry, Surf. Coat. Technol., 2006, 201(5), p 2028-2031.

    Article  Google Scholar 

  9. W. Tillmann and M. Abdulgader, Wire Composition: Its Effect on Metal Disintegration and Particle Formation in Twin-Wire Arc-Spraying Process, J. Therm. Spray Technol., 2013, 22(2-3), p 352-362.

    Article  CAS  Google Scholar 

  10. J. Lee, J. Kim, C. Lee, Effects of carbon contents and gas type on hardness and wear resistance of ferrous coating fabricated by twin wire arc spray process, 235-238 (2017)

  11. K. Bobzin, F. Ernst, K. Richardt, T. Schlaefer, C. Verpoort and G. Flores, Thermal spraying of cylinder bores with the Plasma Transferred Wire Arc process, Surf. Coat. Technol., 2008, 202(18), p 4438-4443.

    Article  CAS  Google Scholar 

  12. R. Paredes, S.C. Amico and A. d’Oliveira, The Effect of Roughness and Pre-Heating of the Substrate on the Morphology of Aluminium Coatings Deposited by Thermal Spraying, Surf. Coat. Technol., 2006, 200(9), p 3049-3055.

    Article  CAS  Google Scholar 

  13. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkimov and V. Fomin, Cold spray technology, Elsevier, Amsterdam, 2007.

    Google Scholar 

  14. H. Assadi, F. Gärtner, T. Stoltenhoff and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394.

    Article  CAS  Google Scholar 

  15. T. Hussain, D.G. McCartney, P.H. Shipway and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379.

    Article  CAS  Google Scholar 

  16. H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner, T. Klassen and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176.

    Article  CAS  Google Scholar 

  17. R. Maestracci, A. Sova, M. Jeandin, J.-M. Malhaire, I. Movchan, P. Bertrand and I. Smurov, Deposition of Composite Coatings by Cold Spray Using Stainless Steel 316L, Copper and Tribaloy T-700 Powder Mixtures, Surf. Coat. Technol., 2016, 287(4), p 1-8.

    Article  CAS  Google Scholar 

  18. S. Dosta, G. Bolelli, A. Candeli, L. Lusvarghi, I. Garcia Cano and J. Maria Guilemany, Plastic Deformation Phenomena During Cold Spray Impact of WC-Co Particles onto Metal Substrates, Acta Materialia, 2017, 124, p 173-181.

    Article  CAS  Google Scholar 

  19. V.K. Champagne, Repair of magnesium components by cold spray techniques, The Cold Spray Materials Deposition Process. Woodhead Publishing, 2007, p 327-352

    Chapter  Google Scholar 

  20. V.K. Champagne, P.F. Leyman and D.J. Helfritch, Magnesium Repair by Cold Spray, Army Research Laboratory, 2008, p 1-34

    Google Scholar 

  21. A. Papyrin, Cold Spray Technology, Adv. Mater. Process., 2001, 9(159), p 49.

    Google Scholar 

  22. J. Vlcek, L. Gimeno, H. Huber and E. Lugscheider, A Systematic Approach to Material Eligibility for the Cold-Spray Process, J. Therm. Spray Technol., 2005, 14(1), p 125-133.

    Article  Google Scholar 

  23. L. Aubanel, L. Lefeivre, F. Delloro, M. Jeandin, E. Sura, Cold Spray Coatings for Automotive Cylinder Block Application, ITSC 2019 - Proceedings of the International Thermal Spray Conference, 433-440 2019

  24. P. Richter, L. Holzgassner, J. Kondas and R. Singh, Advancements in Cold Spray - Equipment, Materials, and Selected Applications, 11th Colloquim High Velocity Oxy-Fuel Flame Spraying, Erding, Germany, 2018.

    Google Scholar 

  25. M. Villa, S. Dosta and J.M. Guilemany, Optimization of 316L Stainless Steel Coatings on Light Alloys Using COLD Gas Spray, Surf. Coat. Technol., 2013, 235, p 220-225.

    Article  CAS  Google Scholar 

  26. R.F. Vaz, A. Silvello, J. Sanchez, V. Albaladejo and I. García Cano, The Influence of the Powder Characteristics on 316L Stainless Steel Coatings Sprayed by Cold Gas Spray, Coatings, 2021, 11(2), p 168.

    Article  CAS  Google Scholar 

  27. K. Amini, A. Akhbarizadeh and S. Javadpour, Effect of Deep Cryogenic Treatment on the Formation of Nano-Sized Carbides and the Wear Behavior of D2 Tool Steel, Int. J. Miner., Metall., Mater., 2012, 19(9), p 795-799.

    Article  CAS  Google Scholar 

  28. K. van Acker, D. Vanhoyweghen, R. Persoons and J. Vangrunderbeek, Influence of Tungsten Carbide Particle Size and Distribution on the Wear Resistance of Laser Clad WC/Ni Coatings, Wear, 2005, 258(1-4), p 194-202.

    Article  Google Scholar 

  29. M.R. Rokni, C.A. Widener and G.A. Crawford, Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition, Surf. Coat. Technol., 2014, 251, p 254-263.

    Article  CAS  Google Scholar 

  30. J. Wu, H. Fang, S. Yoon, H. Kim and C. Lee, Measurement of Particle Velocity and Characterization of Deposition in Aluminum Alloy Kinetic Spraying Process, Appl. Surf. Science, 2005, 252(5), p 1368-1377.

    Article  CAS  Google Scholar 

  31. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer and E.J. Lavernia, Effect of Particle Size, Morphology, and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings, Surf. Coat. Technol., 2006, 201(6), p 3422-3429.

    Article  CAS  Google Scholar 

  32. V.K. Champagne, D.J. Helfritch, S.P.G. Dinavahi and P.F. Leyman, Theoretical and Experimental Particle Velocity in Cold Spray, J. Therm. Spray Technol., 2011, 20(3), p 425-431.

    Article  CAS  Google Scholar 

  33. G. Mauer, R. Singh, K.-H. Rauwald, S. Schrüfer, S. Wilson and R. Vaßen, Diagnostics of Cold-Sprayed Particle Velocities Approaching Critical Deposition Conditions, J. Therm. Spray Technol., 2017, 26(7), p 1423-1433.

    Article  CAS  Google Scholar 

  34. DIN EN ISO 14917 (2017) Thermisches Spritzen - Begriffe, Einteilung (Thermal spraying - Terminology, classification), (in German)

  35. X.-J. Ning, J.-H. Jang and H.-J. Kim, The Effects of Powder Properties on In-Flight Particle Velocity and Deposition Process During Low Pressure Cold Spray Process, Appl. Surf. Sci., 2007, 253(18), p 7449-7455.

    Article  CAS  Google Scholar 

  36. W. Wong, P. Vo, E. Irissou, A.N. Ryabinin, J.-G. Legoux and S. Yue, Effect of Particle Morphology and Size Distribution on Cold-Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2013, 22(7), p 1140-1153.

    Article  CAS  Google Scholar 

  37. W. Wong, E. Irissou, A.N. Ryabinin, J.-G. Legoux and S. Yue, Influence of Helium and Nitrogen Gases on the Properties of Cold Gas Dynamic Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2011, 20(1-2), p 213-226.

    Article  CAS  Google Scholar 

  38. P. Richer, M. Yandouzi, L. Beauvais and B. Jodoin, Oxidation Behaviour of CoNiCrAlY Bond Coats Produced by Plasma, HVOF and Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2010, 204(24), p 3962-3974.

    Article  CAS  Google Scholar 

  39. S.H. Zahiri, D. Fraser, S. Gulizia and M. Jahedi, Effect of Processing Conditions on Porosity Formation in Cold Gas Dynamic Spraying of Copper, J. Therm. Spray Technol., 2006, 15(3), p 422-430.

    Article  CAS  Google Scholar 

  40. S.H. Zahiri, C.I. Antonio and M. Jahedi, Elimination of POROsity in Directly Fabricated Titanium via Cold Gas Dynamic Spraying, J. Mater. Process. Technol., 2009, 209(2), p 922-929.

    Article  CAS  Google Scholar 

  41. T.H. van Steenkiste, J.R. Smith and R.E. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154(2-3), p 237-252.

    Article  Google Scholar 

Download references

Acknowledgment

The authors of this research thank Owe Mars and Olivia Danielsson from Höganäs AB for supplying and developing the powder E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Meeß.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meeß, J., Anasenzl, M., Ossenbrink, R. et al. Cold Gas Spray Inner Diameter Coatings and Their Properties. J Therm Spray Tech 31, 1712–1724 (2022). https://doi.org/10.1007/s11666-022-01365-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01365-5

Keywords

Navigation