Skip to main content
Log in

Influence of Microstructure Evolution on the Electrochemical Corrosion Behavior of (CoCrFeNi)94Ti1.5Al4.5 High Entropy Alloy Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

(CoCrFeNi)94Ti1.5Al4.5 high entropy alloy (HEA) coatings were prepared on Q235 steel substrate by plasma cladding and plasma spraying method to investigate the effect of minor addition of Ti, Al elements and different microstructure evolution on the corrosion resistance. After 18 h of annealing at 800 °C, the microstructure of the cladded HEA coatings presented typical dendrite structure, and the precipitated phases appeared in the interdendrite region. The corrosion current densities for the cladded CoCrFeNi coating, (CoCrFeNi)94Ti1.5Al4.5 coatings without and with annealing and plasma sprayed (CoCrFeNi)94Ti1.5Al4.5 HEA coatings were 0.040, 0.166, 0.016, and 1.276 μA/cm2, respectively, while the corrosion potentials were approximately the same. The corrosion resistance of the cladded coatings was better than that of the sprayed coating. With the addition of Ti and Al elements, the passive region was broadened. The corrosion resistance was improved after annealing, whereas galvanic corrosion was easily formed between precipitates and dendrite region, which was prone to pitting corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448-511.

    Article  CAS  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299-303.

    CAS  Google Scholar 

  3. Z. Lyu, C. Lee, S.Y. Wang, X.S. Fan, J.W. Yeh and P.K. Liaw, Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High-Entropy Alloys: A Review, Metall. Mater. Trans. A, 2019, 50(1), p 1-28.

    Article  CAS  Google Scholar 

  4. J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau and S.Y. Chou, Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Slloys with Multiprincipal Metallic Elements, Metall. Mater. Trans. A, 2004, 35(8), p 2533-2536.

    Article  Google Scholar 

  5. S.Y. Jiang, Z.F. Lin, H.M. Xu and Y.X. Sun, Studies on the Microstructure and Properties of AlxCoCrFeNiTi1-x High Entropy Alloys, J. Alloys Compd., 2018, 741(1), p 826-833.

    Article  CAS  Google Scholar 

  6. Y. Fu, J. Li, H. Luo, C.W. Du and X.G. Li, Recent Advances on Environmental Corrosion Behavior and Mechanism of High-Entropy Alloys, J. Mater. Sci. Technol., 2021, 80, p 217-233.

    Article  Google Scholar 

  7. B.Q. Jin, N.N. Zhang, H.S. Yu, D.X. Hao and Y.L. Ma, AlxCoCrFeNiSi High Entropy Alloy Coatings with High Microhardness and Improved Wear Resistance, Surf. Coat. Technol., 2020, 402(4), p 126328.

    Article  CAS  Google Scholar 

  8. D.Y. Lin, N.N. Zhang, B. He, X. Gong, Y. Zhang, D.Y. Li and F.Y. Dong, Structural Evolution and Performance Changes in FeCoCrNiAlNbx High-Entropy Alloy Coatings Cladded by Laser, Spray. Tech., 2017, 26, p 2005-2012.

    Article  CAS  Google Scholar 

  9. Y.F. Liu, T. Chang, X.B. Liu, Y. Zhu, G. Wang, Y. Meng, J. Liang and J.C. Xie, Research Progress on Tribological Properties of High-Entropy Alloy Coatings, Surf. Technol., 2021, 50(8), p 156169.

    Google Scholar 

  10. J. Sienkiewicz, S. Kuroda, H. Murakami, H. Araki, M. Gizynski and K.J. Kurzydlowski, Fabrication and Oxidation Resistance of TiAl Matrix Coatings Reinforced with Silicide Precipitates Produced by Heat Treatment of Warm Sprayed Coatings, J. Therm. Spray. Tech., 2018, 27, p 1165-1176.

    Article  CAS  Google Scholar 

  11. D.X. Hao, N.N. Zhang, Y. Zhang and D.Y. Li, Effect of Vanadium Addition on Microstructure and Properties of Al0.5Cr0.9FeNi2.5 Multi-Principal Alloys, J. Iron Steel Res. Int., 2021, 28, p 586-596.

    Article  CAS  Google Scholar 

  12. W.J. Hao, R.L. Sun, W. Niu, X.L. Li, M. Gu and R.Y. Zuo, Study on Microstructure and Corrosion Resistance of CoCrFeNiSix High-Entropy Alloy Coating by Laser Cladding, Surf. Technol., 2021, 50(8), p 343-348.

    Google Scholar 

  13. B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai and M.X. Wang, Corrosion Behavior of CuCrFeNiMn High Entropy Alloy System in 1 M Sulfuric Acid Solution, Mater. Corros., 2015, 63(9), p 828-834.

    Article  Google Scholar 

  14. A. Meghwal, A. Anupam, B.S. Murty, C.C. Berndt, R.S. Kottada and A.S.M. Ang, Thermal Spray High-Entropy Alloy Coatings: A Review, J. Therm. Spray. Tech., 2020, 29(11), p 857-893.

    Article  CAS  Google Scholar 

  15. J. Wang, B. Zhang, Y. Yu, Z. Zhang and Z. Wang, Study of High Temperature Friction and Wear Performance of (CoCrFeMnNi)85Ti15 High-Entropy Alloy Coating Prepared by Plasma Cladding, Surf. Coat. Technol., 2020, 384, p 125337.

    Article  CAS  Google Scholar 

  16. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi and H.R. Ammar, Manufacturing Methods, Microstructural and Mechanical Properties Evolutions of High-Entropy Alloys: A Review, Met. Mater. Int., 2020, 26(8), p 1099-1133.

    Article  Google Scholar 

  17. Y. Shi, B. Yang, X. Xie, J. Brechtl, A.K. Dahmen and P.K. Liaw, Corrosion of AlxCoCrFeNi High-Entropy Alloys: Al-content and Potential Scan-rate Dependent Pitting Behavior, Corros. Sci., 2017, 119(5), p 33-45.

    Article  CAS  Google Scholar 

  18. A. Meghwal, A. Anupam, B.S. Murty, C.C. Berndt and A.S.M. Ang, Thermal Spray High-Entropy Alloy Coatings: A Review, J. Therm. Spray. Tech., 2020, 29(11), p 857-893.

    Article  CAS  Google Scholar 

  19. P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek and R. Goodall, The Corrosion Behaviour of CoCrFeNi-x (x = Cu, Al, Sn) High Entropy Alloy Systems in Chloride Solution, Corros. Sci., 2020, 172, p 108740.

    Article  CAS  Google Scholar 

  20. J. Liu, H. Liu, P.J. Chen and J.B. Hao, Microstructural Characterization and Corrosion Behaviour of AlCoCrFeNiTix High-Entropy Alloy Coatings Fabricated by Laser Cladding, Surf. Coat. Technol., 2019, 361, p 63-74.

    Article  CAS  Google Scholar 

  21. Y.F. Kao, T.D. Lee, S.K. Chen and Y.S. Chang, Electrochemical Passive Properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) Alloys in Sulfuric Acids, Corros. Sci., 2010, 52(3), p 1026-1034.

    Article  CAS  Google Scholar 

  22. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang and S.Y. Dong, Phase Evolution and Cavitation Erosion-corrosion Behavior of FeCoCrAlNiTix High Entropy Alloy Coatings on 304 Stainless Steel by Laser Surface Alloying, J. Alloys Compd., 2017, 698, p 761-770.

    Article  CAS  Google Scholar 

  23. Z.H. Han, W.N. Ren, J. Yang, A. Tian, Y.Z. Du, G. Liu, R. Wei, G.J. Zhang and Y.Q. Chen, The Corrosion Behavior of Ultra-fine Grained CoNiFeCrMn High-Entropy Alloys, J. Alloys Compd., 2020, 816, p 152583.

    Article  CAS  Google Scholar 

  24. W. Wang, J. Wang, Z. Sun, J. Li and X. Yang, Effect of Mo and Aging Temperature on Corrosion Behavior of (CoCrFeNi)100-xMox High-Entropy Alloys, J. Alloys Compd., 2020, 812, p 152139.

    Article  CAS  Google Scholar 

  25. X. Zhang, J. Guo, X. Zhang, Y. Song, Z. Li, X. Xing and D. Kong, Influence of Remelting and Annealing Treatment on Corrosion Resistance of AlFeNiCoCuCr High Entropy Alloy in 3.5% NaCl Solution, J. Alloys Compd., 2019, 775, p 565-570.

    Article  CAS  Google Scholar 

  26. Y. Qiu, M.A. Gibson, H.L. Fraser and N. Birbilis, Corrosion Characteristics of High Entropy Alloys, Mater. Sci. Technol., 2015, 31(10), p 1235-1243.

    Article  CAS  Google Scholar 

  27. J. Pan, T. Dai, T. Lu, X. Ni, J. Dai and M. Li, Microstructure and Mechanical Properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 High Entropy Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering, Mater. Sci. Eng., 2018, 738(19), p 362-366.

    Article  CAS  Google Scholar 

  28. W.R. Zhang, P.K. Liaw and Y. Zhang, Science and Technology in High-Entropy Alloys, Sci. China Mater., 2018, 61(1), p 2-22.

    Article  CAS  Google Scholar 

  29. C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh and H.C. Shi, Effect of the Aluminium Content of AlxCrFe1.5MnNi0.5 High-Entropy Alloys on the Corrosion Behaviour in Aqueous Environments, Corros. Sci., 2008, 50(7), p 2053-2060.

    Article  CAS  Google Scholar 

  30. J.Y. Pang, T. Xiong, X.X. Wei, Z.W. Zhua, B. Zhang, Y.T. Zhou, X.H. Shao, Q.Q. Jin, S.J. Zheng and X.L. Ma, Oxide MnCr2O4 Induced Pitting Corrosion in High Entropy AlloyCrMnFeCoNi, Materialia, 2019, 6, p 100275.

    Article  CAS  Google Scholar 

  31. C.W. Lu, Y.S. Lu, Z.H. Lai, H.W. Yen and Y.L. Lee, Comparative Corrosion Behavior of Fe50Mn30Co10Cr10 Dual-phase High-Entropy Alloy and CoCrFeMnNi High-Entropy Alloy in 3.5 wt.% NaCl Solution, J. Alloys Compd., 2020, 842, p 155824.

    Article  CAS  Google Scholar 

  32. Y.Z. Shi, J.K. Mo, F.Y. Zhang, B. Yang, P.K. Liaw and Y. Zhao, In-situ Visualization of Corrosion Behavior of AlxCoCrFeNi High-Entropy Alloys During Electrochemical Polarization, J. Alloys Compd., 2020, 844, p 156014.

    Article  CAS  Google Scholar 

  33. P. Bommersbach, C. Alemany-Dumont, J.P. Millet and B. Normand, Formation and Behaviour Study of an Environment-friendly Corrosion Inhibitor by Electrochemical Methods, Electrochim. Acta, 2005, 51(6), p 1076-1084.

    Article  CAS  Google Scholar 

  34. Z.H. Jin, H.H. Ge, W.W. Lin, Y.W. Zong, S.J. Liu and J.M. Shi, Corrosion Behaviour of 316L Stainless Steel and Anti-corrosion Materials in a High Acidified Chloride Solution, Appl. Surf. Sci., 2014, 322(15), p 47-56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of Liaoning Province (No. 2019-MS-247), Liao Ning Revitalization Talents Program (XLYC1807178) and Chinese National Natural Science Foundation (52001216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nannan Zhang or Shuo Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on High Entropy Alloy and Bulk Metallic Glass Coatings. The issue was organized by Dr. Andrew S.M. Ang, Swinburne University of Technology; Prof. B.S. Murty, Indian Institute of Technology Hyderabad; Distinguished Prof. Jien-Wei Yeh, National Tsing Hua University; Prof. Paul Munroe, University of New South Wales; Distinguished Prof. Christopher C. Berndt, Swinburne University of Technology. The issue organizers were mentored by Emeritus Prof. S. Ranganathan, Indian Institute of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, B., Zuo, X., Li, Q. et al. Influence of Microstructure Evolution on the Electrochemical Corrosion Behavior of (CoCrFeNi)94Ti1.5Al4.5 High Entropy Alloy Coatings. J Therm Spray Tech 31, 1375–1385 (2022). https://doi.org/10.1007/s11666-022-01364-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01364-6

Keywords

Navigation