Skip to main content
Log in

Microstructure and Mechanical Properties of the Plasma-Sprayed and Cold-Sprayed Al0.5CoCrFeNi2Ti0.5 High-Entropy Alloy Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, Al0.5CoCrFeNi2Ti0.5 high-entropy alloy (HEA) powders were prepared by the gas atomization method. The sieved powders with particle sizes of 10-60 and 60-120 µm gas-atomized powders were chosen for further analysis and coatings’ application processes. The as-obtained powders possessed spherical shape and uniform element distribution with an initial FCC structure with a minor BCC phase. The as-atomized powders were annealed at 1000 °C temperature for varying durations and characterized to determine their stable state properties. After annealed at 10000 °C, the metastable BCC phase disappeared and Al0.5CoCrFeNi2Ti0.5 transformed into solid-solution FCC matrix with minor BCC precipitates. The Vickers hardness of the plasma-sprayed coatings showed an increasing trend from 285.3 to 396.7 HV as the current was raised from 500 to 750 A, respectively. Cold-sprayed coatings were performed on both carbon steel and aluminum alloy AA 6061, and their properties were analyzed. The obtained hardness of 426.6 HV was about 10% higher than the plasma-sprayed coatings. Plasma-sprayed coating properties can be varied with plasma power and size of the powder particles. Mechanical locking effect enhanced the bond strength in cold-sprayed AA 6061 compared to carbon substrate. Improved mechanical properties in this alloy were due to precipitation hardening after titanium addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Yeh, S. Chen, J. Gan, S. Lin and T. Chin, Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic, Elements, 2004, 2010(35), p 2533-2536.

    Google Scholar 

  2. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1-93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  3. A. Manzoni, H. Daoud, R. Völkl, U. Glatzel and N. Wanderka, Phase Separation in Equiatomic AlCoCrFeNi High-Entropy Alloy, Ultramicroscopy, 2013, 132, p 212-215. https://doi.org/10.1016/j.ultramic.2012.12.015

    Article  CAS  Google Scholar 

  4. P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang and L. Huang, Microstructures and Properties of an Equimolar AlCoCrFeNi High Entropy Alloy Printed by Selective Laser Melting, Intermetallics, 2019, 104, p 24-32. https://doi.org/10.1016/j.intermet.2018.10.018

    Article  CAS  Google Scholar 

  5. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi and N.K. Mukhopadhyay, Alloying Behaviour, Thermal Stability and Phase Evolution in Quinary AlCoCrFeNi High Entropy Alloy, Adv. Powder Technol., 2018, 29(9), p 2221-2230. https://doi.org/10.1016/j.apt.2018.06.006

    Article  CAS  Google Scholar 

  6. Q.H. Li, T.M. Yue, Z.N. Guo and X. Lin, Microstructure and Corrosion Properties of AlCoCrFeNi High Entropy Alloy Coatings Deposited on AISI 1045 Steel by the Electrospark Process, Metall. Mater. Trans. A, 2013, 44(4), p 1767-1778. https://doi.org/10.1007/s11661-012-1535-4

    Article  CAS  Google Scholar 

  7. K.-C. Cheng, J.-H. Chen, S. Stadler and S.-H. Chen, Properties of Atomized AlCoCrFeNi High-Entropy Alloy Powders and Their Phase-Adjustable Coatings Prepared via Plasma Spray Process, Appl. Surf. Sci., 2019, 478, p 478-486. https://doi.org/10.1016/j.apsusc.2019.01.203

    Article  CAS  Google Scholar 

  8. J.-T. Liang, K.-C. Cheng, Y.-C. Chen, S.-M. Chiu, C. Chiu, J.-W. Lee and S.-H. Chen, Comparisons of Plasma-Sprayed and Sputtering Al0.5CoCrFeNi2 High-Entropy Alloy Coatings, Surf. Coatings Technol., 2020, 403, p 126411. https://doi.org/10.1016/j.surfcoat.2020.126411

    Article  CAS  Google Scholar 

  9. W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai and J.-W. Yeh, Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys, Intermetallics, 2012, 26, p 44-51. https://doi.org/10.1016/j.intermet.2012.03.005

    Article  CAS  Google Scholar 

  10. M. López Ríos, P.P. Socorro Perdomo, I. Voiculescu, V. Geanta, V. Crăciun, I. Boerasu, and J.C. Mirza Rosca, Effects of Nickel Content on the Microstructure, Microhardness and Corrosion Behavior of High-Entropy AlCoCrFeNix Alloys, Sci. Rep., 2020, 10(1), 21119

  11. M. Wu, K. Chen, Z. Xu and D.Y. Li, Effect of Ti Addition on the Sliding Wear Behavior of AlCrFeCoNi High-Entropy Alloy, Wear, 2020, 462-463, 203493. https://doi.org/10.1016/j.wear.2020.203493

    Article  CAS  Google Scholar 

  12. G.-S. Ham, Y.-K. Kim, Y.S. Na and K.-A. Lee, Effect of Ti Addition on the Microstructure and High-Temperature Oxidation Property of AlCoCrFeNi High-Entropy Alloy, Met. Mater. Int., 2021, 27(1), p 156-165. https://doi.org/10.1007/s12540-020-00708-7

    Article  CAS  Google Scholar 

  13. Z. Xu, D.Y. Li and D.L. Chen, Effect of Ti on the Wear Behavior of AlCoCrFeNi High-Entropy Alloy during Unidirectional and Bi-Directional Sliding Wear Processes, Wear, 2021, 476, 203650. https://doi.org/10.1016/j.wear.2021.203650

    Article  CAS  Google Scholar 

  14. M. Löbel, T. Lindner, T. Mehner and T. Lampke, Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF, Coatings, 2017, 7(9), p 144.

    Article  Google Scholar 

  15. M. Chuang, M. Tsai, W. Wang, S. Lin and J. Yeh, Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy High-Entropy Alloys, Acta Mater., 2011, 59, p 6308-6317.

    Article  CAS  Google Scholar 

  16. G.P. León, V.E. Lamberti, R.D. Seals, T.M. Abu-Lebdeh and S.A. Hamoush, Gas Atomization of Molten Metal: Part I. Numerical Modeling Conception, Am. J. Eng. Appl. Sci., 2016, 9(2), p 303-322. https://doi.org/10.3844/ajeassp.2016.303.322

    Article  Google Scholar 

  17. J. Lehtonen, Y. Ge, N. Ciftci, O. Heczko, V. Uhlenwinkel and S.-P. Hannula, Phase Structures of Gas Atomized Equiatomic CrFeNiMn High Entropy Alloy Powder, J. Alloys Compd., 2020, 827, p 154142. https://doi.org/10.1016/j.jallcom.2020.154142

    Article  CAS  Google Scholar 

  18. J. Liu, H. Liu, P. Chen and J. Hao, Microstructural Characterization and Corrosion Behaviour of AlCoCrFeNiTix High-Entropy Alloy Coatings Fabricated by Laser Cladding, Surf. Coatings Technol., 2019, 361, p 63-74. https://doi.org/10.1016/j.surfcoat.2019.01.044

    Article  CAS  Google Scholar 

  19. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, P. S, R.S. Kottada, and B.S. Murty, Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2015, 46(2), 791-800.

  20. F. Gärtner, T. Stoltenhoff, T. Schmidt and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15(2), p 223-232. https://doi.org/10.1361/105996306X108110

    Article  CAS  Google Scholar 

  21. A. Anupam, S. Kumar, N.M. Chavan, B.S. Murty and R.S. Kottada, First Report on Cold-Sprayed AlCoCrFeNi High-Entropy Alloy and Its Isothermal Oxidation, J. Mater. Res., 2019, 34(5), p 796-806. https://doi.org/10.1557/jmr.2019.38

    Article  CAS  Google Scholar 

  22. D.V. Hushchyk, A.I. Yurkova, V.V. Cherniavsky, I.I. Bilyk and S.O. Nakonechnyy, Nanostructured AlNiCoFeCrTi High-Entropy Coating Performed by Cold Spray, Appl. Nanosci., 2020, 10(12), p 4879-4890. https://doi.org/10.1007/s13204-020-01364-4

    Article  CAS  Google Scholar 

  23. S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, K. Wen and R. Lupoi, Deposition of FeCoNiCrMn High Entropy Alloy (HEA) Coating via Cold Spraying, J. Mater. Sci. Technol., 2019, 35(6), p 1003-1007. https://doi.org/10.1016/j.jmst.2018.12.015

    Article  CAS  Google Scholar 

  24. Y. Liang, B. Shi, X. Yang, J. Zhang and X. Meng, Microstructure and Nano-Mechanical Property of Cold Spray Co-Base Refractory Alloy Coating, Acta Metall. Sin. English Lett., 2011, 24(3), p 190-194.

    CAS  Google Scholar 

  25. C. Huang, W. Li, Y. Xie, M.-P. Planche, H. Liao and G. Montavon, Effect of Substrate Type on Deposition Behavior and Wear Performance of Ni-Coated Graphite/Al Composite Coatings Deposited by Cold Spraying, J. Mater. Sci. Technol., 2017, 33(4), p 338-346. https://doi.org/10.1016/j.jmst.2016.11.016

    Article  CAS  Google Scholar 

  26. S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li and R. Lupoi, Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications, Addit. Manuf., 2018, 21, p 628-650. https://doi.org/10.1016/j.addma.2018.04.017

    Article  CAS  Google Scholar 

  27. L. Ajdelsztajn, B. Jodoin, G.E. Kim and J.M. Schoenung, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metall. Mater. Trans. A, 2005, 36(11), p 3263-3263. https://doi.org/10.1007/s11661-005-0099-y

    Article  Google Scholar 

  28. Q. Cao, G. Huang, L. Ma and L. Xing, Comparison of a Cold-sprayed and Plasma-sprayed Fe25Cr20Mo1Si Amorphous Alloy Coatings on 40Cr Substrates, Mater. Corros., 2020, 71(11), p 1872-1884. https://doi.org/10.1002/maco.202011558

    Article  CAS  Google Scholar 

  29. J. Liang, K. Cheng and S. Chen, Effect of Heat Treatment on the Phase Evolution and Mechanical Properties of Atomized AlCoCrFeNi High-Entropy Alloy Powders, J. Alloys Compd., 2019, 803, p 484-490. https://doi.org/10.1016/j.jallcom.2019.06.301

    Article  CAS  Google Scholar 

  30. S.-M. Chiu, T.-T. Lin, R.K. Sammy, N.G. Kipkirui, Y.-Q. Lin, J.-T. Liang and S.-H. Chen, Investigation of Phase Constitution and Stability of Gas-Atomized Al0.5CoCrFeNi2 High-Entropy Alloy Powders, Mater. Chem. Phys., 2022, 275, p 125194. https://doi.org/10.1016/j.matchemphys.2021.125194

    Article  CAS  Google Scholar 

  31. S. Jiang, Z. Lin, H. Xu and Y. Sun, Studies on the Microstructure and Properties of AlxCoCrFeNiTi1-x High Entropy Alloys, J. Alloys Compd., 2018, 741, p 826-833. https://doi.org/10.1016/j.jallcom.2018.01.247

    Article  CAS  Google Scholar 

  32. E. Garcia, H. Lee and S. Sampath, Phase and Microstructure Evolution in Plasma Sprayed Yb2Si2O7 Coatings, J. Eur. Ceram. Soc., 2019, 39(4), p 1477-1486. https://doi.org/10.1016/j.jeurceramsoc.2018.11.018

    Article  CAS  Google Scholar 

  33. J. Luo, N. Shi, Y.-Z. Xing, C. Jiang and Y. Chen, Effect of Arc Power on the Wear and High-Temperature Oxidation Resistances of Plasma-Sprayed Fe-Based Amorphous Coatings, High Temp. Mater. Process., 2019, 2019(38), p 639-646. https://doi.org/10.1515/htmp-2019-0003

    Article  CAS  Google Scholar 

  34. C. Lee and J. Kim, Microstructure of Kinetic Spray Coatings: A Review, J. Therm. Spray Technol., 2015, 24(4), p 592-610. https://doi.org/10.1007/s11666-015-0223-5

    Article  CAS  Google Scholar 

  35. H.-T. Wang, C.-J. Li, G.-J. Yang, C.-X. Li, Q. Zhang and W.-Y. Li, Microstructural Characterization of Cold-Sprayed Nanostructured FeAl Intermetallic Compound Coating and Its Ball-Milled Feedstock Powders, J. Therm. Spray Technol., 2007, 16(5-6), p 669-676. https://doi.org/10.1007/s11666-007-9089-5

    Article  CAS  Google Scholar 

  36. A. Chaudhuri, Y. Raghupathy, D. Srinivasan, S. Suwas and C. Srivastava, Microstructural Evolution of Cold-Sprayed Inconel 625 Superalloy Coatings on Low Alloy Steel Substrate, Acta Mater., 2017, 129, p 11-25. https://doi.org/10.1016/j.actamat.2017.02.070

    Article  CAS  Google Scholar 

  37. K. Kim, S. Kuroda, M. Watanabe, R. Huang, H. Fukanuma and H. Katanoda, Comparison of Oxidation and Microstructure of Warm-Sprayed and Cold-Sprayed Titanium Coatings, J. Therm. Spray Technol., 2012, 21(June), p 550-560. https://doi.org/10.1007/s11666-011-9703-4

    Article  CAS  Google Scholar 

  38. H.-T. Wang, C.-J. Li, G.-J. Yang and C.-X. Li, Effect of Heat Treatment on the Microstructure and Property of Cold-Sprayed Nanostructured FeAl/Al2O3 Intermetallic Composite Coating, Vacuum, 2008, 83(1), p 146-152. https://doi.org/10.1016/j.vacuum.2008.03.094

    Article  CAS  Google Scholar 

  39. L. Shaw, H. Luo, J. Villegas and D. Miracle, Thermal Stability of Nanostructured Al93Fe3Cr2Ti2 Alloys Prepared via Mechanical Alloying, Acta Mater., 2003, 51(9), p 2647-2663.

    Article  CAS  Google Scholar 

  40. T. Hussain, D.G. McCartney and P.H. Shipway, Bonding between Aluminium and Copper in Cold Spraying: Story of Asymmetry, Mater. Sci. Technol., 2012, 28(12), p 1371-1378. https://doi.org/10.1179/1743284712Y.0000000051

    Article  CAS  Google Scholar 

  41. Y. Li, X. Wang, S. Yin and S. Xu, Influence of Particle Initial Temperature on High Velocity Impact Process in Cold Spraying, Procedia Environ. Sci., 2011, 2012(12(Icese)), p 298-304. https://doi.org/10.1016/j.proenv.2012.01.281

    Article  CAS  Google Scholar 

  42. M.R. Rokni, S.R. Nutt, C.A. Widener, V.K. Champagne and R.H. Hrabe, Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26(6), p 1308-1355. https://doi.org/10.1007/s11666-017-0575-0

    Article  Google Scholar 

  43. R. Drehmann, T. Grund, T. Lampke, B. Wielage, C. Wüstefeld, M. Motylenko and D. Rafaja, Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates, J. Therm. Spray Technol., 2018, 27(3), p 446-455. https://doi.org/10.1007/s11666-018-0688-0

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors acknowledge the support from the Ministry of Science and Technology of Taiwan under Project No. 107-2218-E-011-017 and the support by the Research Center for Intelligent Medical Devices, Ming Chi University of Technology. This work was financially supported by the “High Entropy Materials Center” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) and from Project MOST 109-2634-F-007-024 by the Ministry of Science and Technology (MOST) in Taiwan. Thanks for Plus Metal Tech., Co. supporting in conducting plasma and cold spraying processes.

Author information

Authors and Affiliations

Authors

Contributions

Rotich Sammy Kiplangat was involved in writing—original draft, investigation. Tzu-Tang Lin performed writing—review & editing and investigation. Ngetich Gilbert Kipkirui contributed to investigation and data curation. Shih-Hsun Chen did supervision, methodology and resources.

Corresponding author

Correspondence to Shih-Hsun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on High Entropy Alloy and Bulk Metallic Glass Coatings. The issue was organized by Dr. Andrew S.M. Ang, Swinburne University of Technology; Prof. B.S. Murty, Indian Institute of Technology Hyderabad; Distinguished Prof. Jien-Wei Yeh, National Tsing Hua University; Prof. Paul Munroe, University of New South Wales; Distinguished Prof. Christopher C. Berndt, Swinburne University of Technology. The issue organizers were mentored by Emeritus Prof. S. Ranganathan, Indian Institute of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiplangat, R.S., Lin, TT., Kipkirui, N.G. et al. Microstructure and Mechanical Properties of the Plasma-Sprayed and Cold-Sprayed Al0.5CoCrFeNi2Ti0.5 High-Entropy Alloy Coatings. J Therm Spray Tech 31, 1207–1221 (2022). https://doi.org/10.1007/s11666-022-01356-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01356-6

Keywords

Navigation