Skip to main content
Log in

Corrosion Performance of Wire Arc Deposited Zinc Aluminum Pseudo Alloy and Zinc 15 Aluminum Alloy Coatings on Steel in Chloride Environment

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This study investigated the corrosion performance of wire arc deposited zinc-aluminum pseudo alloy coating (Zn-Al pseudo alloy) with higher aluminum content and Zn-15Al alloy coating in the aggressive chloride environment. The performance of both coatings was assessed by employing morphological analysis, chemical composition and material characterization tests, and electrochemical studies. Micrographs of the as-deposited coatings revealed a denser and compact microstructure in the pseudo alloy coating compared to Zn-15Al coating. The electrochemical test results demonstrated that the pseudo alloy coating exhibited a four times lower corrosion rate and four times higher corrosion resistance compared to the Zn-15Al coating. Although, the formation of simonkolleite is noticed in the corrosion products of both the coatings, a more thin and compact corrosion product layer is observed in the pseudo alloy coating. The superior performance of Zn-Al pseudo alloy coating can be attributed to the presence of higher aluminum content and the existence of zinc-rich and aluminum-rich areas in the coating microstructure, where zinc offers sacrificial protection at the aluminum-rich region boundaries, in addition to the formation of stable corrosion products of zinc at zinc-rich areas, passivation of aluminum at the aluminum-rich areas, reduced the overall rate of corrosion in such coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K.A. Chandler, Marine and Offshore Corrosion, Elsevier, London, 1985.

    Google Scholar 

  2. J.P. Ault, The Use of Coatings for Corrosion Control on Offshore Oil Structures, J. Prot. Coat. Linings, 2006, 23(4), p 42–46.

    Google Scholar 

  3. A. López-Ortega, R. Bayón and J. Arana, Evaluation of Protective Coatings for Offshore Applications. Corrosion and Tribocorrosion Behavior in Synthetic Seawater, Surf. Coat. Technol., 2018, 349, p 1083–1097.

    Article  CAS  Google Scholar 

  4. M. Iannuzzi, A. Barnoush and R. Johnsen, Materials and Corrosion Trends in Offshore and Subsea Oil and Gas Production, NPJ Mater. Degrad., 2017, 1(1), p 1–11.

    Article  Google Scholar 

  5. K.Y. Ann and H.-W. Song, Chloride Threshold Level for Corrosion of Steel in Concrete, Corros. Sci., 2007, 49(11), p 4113–4133.

    Article  CAS  Google Scholar 

  6. H.U. Sajid and R. Kiran, Influence of Corrosion and Surface Roughness on Wettability of ASTM A36 Steels, J. Constr. Steel Res., 2018, 144, p 310–326.

    Article  Google Scholar 

  7. H.U. Sajid, R. Kiran, X. Qi, D.S. Bajwa and D. Battocchi, Employing Corn Derived Products to Reduce the Corrosivity of Pavement Deicing Materials, Constr. Build. Mater., 2020, 263, p 120662.

    Article  CAS  Google Scholar 

  8. F. Deng, Y. Huang, F. Azarmi and Y. Wang, Pitted Corrosion Detection of Thermal Sprayed Metallic Coatings Using Fiber Bragg Grating Sensors, Coatings, 2017, 7(3), p 35.

    Article  CAS  Google Scholar 

  9. P.A. Sørensen, S. Kiil, K. Dam-Johansen and C.E. Weinell, Anticorrosive Coatings: A Review, J. Coat. Technol. Res., 2009, 6(2), p 135–176.

    Article  CAS  Google Scholar 

  10. Y.-T. Li and B.-R. Hou, Anticorrosion Mechanism of Thermal Spraying Coatings of Zinc and Aluminum and of Alloys Made of the Same in Marine Environment: A Review, Mater. Prot.-Wuhan-, 2005, 38(9), p 30.

    CAS  Google Scholar 

  11. A. Farooq, M. Hamza, Q. Ahmed and K.M. Deen, Evaluating the Performance of Zinc and Aluminum Sacrificial Anodes in Artificial Seawater, Electrochim. Acta, 2019, 314, p 135–141.

    Article  CAS  Google Scholar 

  12. S. Schuerz, M. Fleischanderl, G. Luckeneder, K. Preis, T. Haunschmied, G. Mori and A. Kneissl, Corrosion Behaviour of Zn–Al–Mg Coated Steel Sheet in Sodium Chloride-Containing Environment, Corros. Sci., 2009, 51(10), p 2355–2363.

    Article  CAS  Google Scholar 

  13. E.A. Esfahani, H. Salimijazi, M.A. Golozar, J. Mostaghimi and L. Pershin, Study of Corrosion Behavior of Arc Sprayed Aluminum Coating on Mild Steel, J. Therm. Spray Technol., 2012, 21(6), p 1195–1202.

    Article  CAS  Google Scholar 

  14. T.-Y. Yung, T.-C. Chen, K.-C. Tsai, W.-F. Lu, J.-Y. Huang and T.-Y. Liu, Thermal Spray Coatings of Al, ZnAl and Inconel 625 Alloys on SS304L for Anti-Saline Corrosion, Coatings, 2019, 9(1), p 32.

    Article  CAS  Google Scholar 

  15. P. Fauchais and A. Vardelle, Thermal Sprayed Coatings used Against Corrosion and Corrosive Wear, Adv. Plasma Spray Appl., 2012, 10, p 34448.

    Google Scholar 

  16. R.M.H.P. Rodriguez, R.S.C. Paredes, S.H. Wido and A. Calixto, Comparison of Aluminum Coatings Deposited by Flame Spray and by Electric Arc Spray, Surf. Coat. Technol., 2007, 202(1), p 172–179.

    Article  CAS  Google Scholar 

  17. E. Dalledone, M. Barbosa and S. Wolynec, Zinc-55% Aluminum-16% Silicon Coating Compared with Zinc Coating, Mater. Perform., 1995, 34(7), p 1203.

    Google Scholar 

  18. A. Marder, The Metallurgy of Zinc-Coated Steel, Prog. Mater Sci., 2000, 45(3), p 191–271.

    Article  CAS  Google Scholar 

  19. Z. Panossian, L. Mariaca, M. Morcillo, S. Flores, J. Rocha, J. Pena, F. Herrera, F. Corvo, M. Sanchez and O. Rincon, Steel Cathodic Protection Afforded by Zinc, Aluminium and Zinc/Aluminium Alloy Coatings in the Atmosphere, Surf. Coat. Technol., 2005, 190(2–3), p 244–248.

    Article  CAS  Google Scholar 

  20. A. Gulec, O. Cevher, A. Turk, F. Ustel and F. Yilmaz, Accelerated Corrosion Behaviors of Zn, Al and Zn/15Al Coatings on a Steel Surface, Materiali in tehnologije, 2011, 45(5), p 477–482.

    CAS  Google Scholar 

  21. Y. Li, Corrosion Behaviour of Hot Dip Zinc and Zinc-Aluminium Coatings on Steel in Seawater, Bull. Mater. Sci., 2001, 24(4), p 355–360.

    Article  CAS  Google Scholar 

  22. G. Kong and R. White, Toward Cleaner Production of Hot Dip Galvanizing Industry in China, J. Clean. Prod., 2010, 18(10–11), p 1092–1099.

    Article  CAS  Google Scholar 

  23. S. Egtvedt, "Thermally Sprayed Aluminum (TSA) with Cathodic Protection as Corrosion Protection for Steel in Natural Seawater: Characterization of Properties on TSA and Calcareous Deposit," Institutt for materialteknologi, 2011

  24. D. Mari, L. Miguel and C.E. Nebel, Comprehensive Hard Materials, Newnes, New York, 2014.

    Google Scholar 

  25. J.R. Davis, Handbook of Thermal Spray Technology, ASM international, New York, 2004.

    Google Scholar 

  26. M.H. Abd Malek, N.H. Saad, S.K. Abas, N.M. Shah, Thermal arc spray overview, in IOP Conference Series: Materials Science and Engineering, 2013, IOP Publishing, pp. 012028

  27. R. Bolot, R. Bonnet, G. Jandin and C. Coddet, Application of CAD to CFD for the Wire Arc Spray Process, Thermal Spray, 2001, 2, p 889–894.

    Google Scholar 

  28. B. Syrek-Gerstenkorn, S. Paul and A.J. Davenport, Sacrificial Thermally Sprayed Aluminium Coatings for Marine Environments: A Review, Coatings, 2020, 10(3), p 267.

    Article  CAS  Google Scholar 

  29. S. Kuroda, J. Kawakita and M. Takemoto, An 18-year Exposure Test of Thermal-Sprayed Zn, Al, and Zn-Al Coatings in Marine Environment, Corrosion, 2006, 62(7), p 635–647.

    Article  CAS  Google Scholar 

  30. A. Güleç, Ö. Cevher, A. Türk, F. Ustel and F. Yılmaz, Accelerated Corrosion Behaviors of Zn, Al and Zn/15Al Coatings on a Steel Surface, Science, 2011, 2, p 1–1008.

    Google Scholar 

  31. L. Qiao, Y. Wu, J. Duan, W. Gao and S. Hong, Corrosion Behavior of Arc-Sprayed Pore-Sealed Zn and Al Coatings in Seawater Containing Sulfate-Reducing Bacteria (SRB), J. Therm. Spray Technol., 2021, 30(6), p 1557–1565.

    Article  CAS  Google Scholar 

  32. S. Hong, Y. Wu, W. Gao, J. Zhang and Y. Qin, Corrosion Behavior of Arc-Sprayed Zn-Al Coating in the Presence of Sulfate-Reducing Bacteria in Seawater, J. Mater. Eng. Perform., 2015, 24(11), p 4449–4455.

    Article  CAS  Google Scholar 

  33. H. Katayama and S. Kuroda, Long-Term Atmospheric Corrosion Properties of Thermally Sprayed Zn, Al and Zn–Al Coatings Exposed in a Coastal Area, Corros. Sci., 2013, 76, p 35–41.

    Article  CAS  Google Scholar 

  34. A.Q. Liu, K. Xiao, C.F. Dong and X.G. Li, Corrosion Behaviour of Zn-Al Pseudo-Alloy Coating on Carbon Steel in Chloride Environments, Advanced Materials Research, Springer, Berlin, 2012, p 45–48

    Google Scholar 

  35. H.-S. Lee, J.K. Singh, M.A. Ismail, C. Bhattacharya, A.H. Seikh, N. Alharthi and R.R. Hussain, Corrosion Mechanism and Kinetics of Al-Zn Coating Deposited by arc Thermal Spraying Process in Saline Solution at Prolong Exposure Periods, Sci. Rep., 2019, 9(1), p 1–17.

    CAS  Google Scholar 

  36. H. Hu, P. Zhang, D. Wei and F. Su, Microstructure and Corrosion Behavior of Arc Sprayed Zn-xAl (x= 15, 30, 50) Alloy Coatings in NaCl Solution, Mater. Res. Express, 2019, 6(10), p 1065f1067.

    Article  CAS  Google Scholar 

  37. S. Djerourou, H. Lahmar, N. Bouhellal, Y. Mebdoua, Study of Twin Wire Arc Sprayed Zinc/Aluminum Coating on Low Carbon Steel Substrate: Application to Corrosion Protection, Advanced materials research, 2013, Trans Tech Publ, pp. 271–276

  38. A. Darabi and F. Azarmi, Investigation on Relationship Between Microstructural Characteristics and Mechanical Properties of Wire-Arc-Sprayed Zn-Al Coating, J. Therm. Spray Technol., 2020, 29(1–2), p 297–307.

    Article  CAS  Google Scholar 

  39. H.-S. Lee, J.K. Singh and J.H. Park, Pore Blocking Characteristics of Corrosion Products Formed on Aluminum Coating Produced by Arc Thermal Metal Spray Process in 35 wt.% NaCl Solution, Constr. Build. Mater., 2016, 113, p 905–916.

    Article  CAS  Google Scholar 

  40. Q. Jiang, Q. Miao, W.-P. Liang, F. Ying, F. Tong, Y. Xu, B.-L. Ren, Z.-J. Yao and P.-Z. Zhang, Corrosion Behavior of Arc Sprayed Al–Zn–Si–RE Coatings on Mild Steel in 3.5 wt% NaCl Solution, Electrochimica Acta, 2014, 115, p 644–656.

    Article  CAS  Google Scholar 

  41. A. B117, Standard Practice for Operating Salt Spray (Fog) Apparatus (ASTM International, 2011)

  42. K. Geels, D.B. Fowler, W.-U. Kopp and M.R. Ckert, Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis, and Hardness Testing, ASTM international, West Conshohocken, 2007.

    Book  Google Scholar 

  43. Y. Meng, L. Liu, D. Zhang, C. Dong, Y. Yan, A.A. Volinsky and L.-N. Wang, Initial Formation of Corrosion Products on Pure Zinc in Saline Solution, Bioactive Mater., 2019, 4, p 87–96.

    Article  Google Scholar 

  44. A. Güleç, Ö. Cevher, F. Üstel, A. Türk, A. Akıncı, F. Yılmaz, Performance Comparison of Thermal-Sprayed Coatings for Ductile Iron Pipe (2011).

  45. S. Tailor, A. Modi and S. Modi, Synthesis, Microstructural, Corrosion and Antimicrobial Properties of Zn and Zn–Al Coatings, Surf. Eng., 2019, 35(8), p 736–742.

    Article  CAS  Google Scholar 

  46. S.F. Bonabi, F. Ashrafizadeh, A. Sanati and S.M. Nahvi, Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate, J. Therm. Spray Technol., 2018, 27(3), p 524–537.

    Article  CAS  Google Scholar 

  47. A.R. Moreira, Z. Panossian, P.L. Camargo, M.F. Moreira, I.C.D. Silva and J.E.R. de Carvalho, Zn/55Al Coating Microstructure and Corrosion Mechanism, Corros. Sci., 2006, 48(3), p 564–576.

    Article  CAS  Google Scholar 

  48. H. Dingyong, G. Dandan and J. Jianmin, Corrosion Behavior of Arc Sprayed Aluminum Coating on Magnesium Alloy in Chlorine Ion, Weld. Join., 2007, 3, p 1229.

    Google Scholar 

  49. C. Vargel, Corrosion of Aluminium, Elsevier, New York, 2020.

    Book  Google Scholar 

  50. V.S. Bagotsky, Fundamentals of Electrochemistry, Wiley, New York, 2005.

    Book  Google Scholar 

  51. P. Marcus, Corrosion Mechanisms in Theory and Practice, CRC Press, London, 2011.

    Google Scholar 

  52. H. Marchebois, S. Joiret, C. Savall, J. Bernard and S. Touzain, Characterization of Zinc-Rich Powder Coatings by EIS and Raman Spectroscopy, Surf. Coat. Technol., 2002, 157(2–3), p 151–161.

    Article  CAS  Google Scholar 

  53. T. Nguyen, J. Hubbard and J. Pommersheim, Unified Model for the Degradation of Organic Coatings on Steel in a Neutral Electrolyte, JCT J. Coat. Technol., 1996, 68(855), p 45–56.

    CAS  Google Scholar 

  54. A. Goyal, H.S. Pouya, E. Ganjian and P. Claisse, A Review of Corrosion and Protection of Steel in Concrete, Arab. J. Sci. Eng., 2018, 43(10), p 5035–5055.

    Article  CAS  Google Scholar 

  55. Y. Liu, B.-S. Xu, Z.-X. Zhu, Z.-X. Li and J. Ma, New Pattern Zn-Al-Mg-RE Coating Technics for Steel Structure Sustainable Design, J. Cent. South Univ. Technol., 2005, 12(2), p 211–214.

    Article  CAS  Google Scholar 

  56. R. Landolfo, L. Cascini and F. Portioli, Modeling of Metal Structure Corrosion Damage: A State of the Art Report, Sustainability, 2010, 2(7), p 2163–2175.

    Article  CAS  Google Scholar 

  57. G. Astm, Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, Ann. Book ASTM Stand., 2009, 3, p 237–239.

    Google Scholar 

  58. A. Momber, P. Plagemann and V. Stenzel, Performance and Integrity of Protective Coating Systems for Offshore Wind Power Structures After Three Years Under Offshore Site Conditions, Renew. Energy, 2015, 74, p 606–617.

    Article  Google Scholar 

  59. B. Hinderliter, S. Croll, D. Tallman, Q. Su and G. Bierwagen, Interpretation of EIS Data from Accelerated Exposure of Coated Metals Based on Modeling of Coating Physical Properties, Electrochim. Acta, 2006, 51(21), p 4505–4515.

    Article  CAS  Google Scholar 

  60. A. López-Ortega, J. Arana and R. Bayón, Tribocorrosion of Passive Materials: A Review on Test Procedures and Standards, Int. J. Corros., 2018, 17, p 10029.

    Google Scholar 

  61. F. Mansfeld and C. Tsai, Determination of Coating Deterioration with EIS: I. Basic Relationships, Corrosion, 1991, 47(12), p 958–963.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under Grant No. CMMI-1750316. The findings and opinions expressed in this article are those of the authors only and do not necessarily reflect the views of the sponsors. In addition, the suppliers and point of contacts from Thermal Spray Depot (Washington, PA, USA) are gratefully acknowledged for providing materials and support.

Author information

Authors and Affiliations

Authors

Contributions

Ratna: Data curation, Methodology, Formal analysis, Investigation, Writing - original draft, Writing - review & editing. Ying Huang: Project administration, Funding acquisition, Supervision, Writing - review & editing. Xiaoning Qi: Supervision, Writing - review & editing.

Corresponding author

Correspondence to Ying Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasoda, R.D., Huang, Y. & Qi, X. Corrosion Performance of Wire Arc Deposited Zinc Aluminum Pseudo Alloy and Zinc 15 Aluminum Alloy Coatings on Steel in Chloride Environment. J Therm Spray Tech 31, 1918–1933 (2022). https://doi.org/10.1007/s11666-022-01329-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01329-9

Keywords

Navigation