Skip to main content

Advertisement

Log in

Refractory High-Entropy Alloy Coatings for High-Temperature Aerospace and Energy Applications

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Refractory high-entropy alloys (RHEAs) were first developed a decade ago for aerospace applications, with the goal of manufacturing high-strength materials having higher structural performance than high-nickel superalloys. Herein, RHEAs were investigated as protective coatings that can provide increased erosion and corrosion resistance for high-temperature components. This is a step to demonstrate their use as a viable, cost-effective solution for both aerospace and energy industry needs. Two nearly equiatomic-composition RHEAs based on HfNbTaZr and MoNbTaVW are examined. A methodology for RHEA coating composition selection, manufacturing, and characterization is presented. It is shown that HfNbTaZr is suitable for harsh environments that do not include nuclear reactor radiation, while MoNbTaVW is suitable for harsh environments that include radiation. The air plasma spray (APS) and high-velocity oxygen-fuel (HVOF) thermal spray coating process is used to deposit 50 to 200-µm thick functional coatings on stainless steel (SS) 321 and Inconel 718 substrates. Contact force-dependent friction and wear rates, as well as depth- and strain rate-dependent hardness, were obtained using spheroconical scratch-based and nanoindentation methods. The data show excellent adhesive properties, high strength, and reasonable homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O.N. Senkov et al., Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014

    Article  CAS  Google Scholar 

  2. B.S. Murty, J.W. Yeh, S. Ranganathan and P.P. Bhattacharjee, High-Entropy Alloys, 2nd ed. Elsevier, Amsterdam, 2019.

    Google Scholar 

  3. A. Meghwal et al., Thermal Spray High-Entropy Alloy Coatings: A Review, J. Therm. Spray Technol., 2020, 29, p 857–893. https://doi.org/10.1007/s11666-020-01047-0

    Article  CAS  Google Scholar 

  4. Rodriguez, S., Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques, Springer International Publishing, 1st Ed., ISBN 978-3-030-28690-3, DOI: https://doi.org/10.1007/978-3-030-28691-0, www.cfdturbulence.com, 2019.

  5. UPT, United Protective Technologies, Advanced Thin Film Coatings, www.upt-usa.com, 2019.

  6. A.S.M. Ang and C.C. Berndt, A Review of Testing Methods for Thermal Spray Coatings, Int. Mater. Rev., 2014, 59(4), p 179–223. https://doi.org/10.1179/1743280414Y.0000000029

    Article  CAS  Google Scholar 

  7. “Technology Readiness Level Definition”, NASA, https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf. Accessed on October 26, 2021.

  8. X. Feng, J.U. Surjadi and Y. Lu, Annealing-Induced Abnormal Hardening in Nanocrystalline NbMoTaW High-Entropy Alloy Thin Films, Mater. Lett., 2020 https://doi.org/10.1016/j.matlet.2020.128097

    Article  Google Scholar 

  9. Rodriguez, S. et al., Application of Refractory High-Entropy Alloys for Higher-Reliability and Higher-Efficiency Brayton Cycles and Advanced Nuclear Reactors, Sandia National Laboratories, SAND2021-11377, 2021.

  10. X.B. Feng et al., Size Effects on the Mechanical Properties of Nanocrystalline NbMoTaW Refractory High Entropy Alloy Thin Films, Int. J. Plast, 2017, 95, p 264–277. https://doi.org/10.1016/j.ijplas.2017.04.013

    Article  CAS  Google Scholar 

  11. H. Kim et al., Mechanical and Electrical Properties of NbMoTaW Refractory High-Entropy Alloy Thin Coatings, Int. J. Refract Metal Hard Mater., 2019, 80, p 286–291. https://doi.org/10.1016/J.IJRMHM.2019.02.005

    Article  CAS  Google Scholar 

  12. Rodriguez, S., A. Kustas, and G. Monroe, Metal Alloy and RHEA Additive Manufacturing for Nuclear Energy and Aerospace Applications, Sandia National Laboratories, SAND2020-7244, 2020.

  13. Fleming, D. et al., Corrosion and Erosion Behavior in Supercritical CO2 Power Cycles, Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, GT2014, Germany, https://doi.org/10.1115/GT2014-25136, 2014

  14. A. Poulia et al., Dry-Sliding Wear Response of MoTaWNbV High Entropy Alloy, Adv. Eng. Mater., 2017 https://doi.org/10.1002/adem.201600535

    Article  Google Scholar 

  15. Rodriguez, S., A. Kustas, and D. Ames, Non-Provisional Patent Application No. 17/062,136, High Entropy Alloys, Refractory High Entropy Alloys, Methods of Selecting and Making, and Structures Formed from High Entropy and Refractory High Entropy Alloys, Sandia National Laboratories, 2020.

  16. A. Baranova, Russian Scientists Research Steel-Vanadium-Steel Laminate for Next-Gen Nuclear Reactors, ASM International, Russell Township, 2019.

    Google Scholar 

  17. Wright, R., New Alloy Material Approved for Use in High-Temperature Nuclear Plants, Idaho National Laboratory, 2020.

  18. O.N. Senkov et al., Development and Exploration of Refractory High-entropy Alloys—A Review, J. Mater. Res., 2018, 1, p 3092–3128.

    Article  Google Scholar 

  19. E.P. George, D. Raabe and R.O. Ritchie, High-Entropy Alloys, Nat. Rev. Mater., 2019, 4, p 515–534.

    Article  CAS  Google Scholar 

  20. J. Wadsworth, T.G. Nieh and J.J. Stephens, Recent Advances in Aerospace Refractory Metal Alloys, Int. Mater. Rev., 1988, 33(1), p 131–150. https://doi.org/10.1179/imr.1988.33.1.131

    Article  CAS  Google Scholar 

  21. Corrosionpedia, Refractory Metals: Properties, Types and Applications, https://www.corrosionpedia.com/2/1426/corrosion-101/refractory-metals-properties-types-and-applications. Accessed on June 4, 2021.

  22. F. Mueller et al., On the Oxidation Mechanism of Refractory High-entropy Alloys, Corros. Sci., 2019, 159, p 108161.

    Article  CAS  Google Scholar 

  23. M.A. Jog and L. Huang, Transient Heating and Melting of Particles in Plasma Spray Coating Process, J. Heat Transf., 1996, 118, p 471–477. https://doi.org/10.1115/1.2825868

    Article  CAS  Google Scholar 

  24. K. Jacques, N. Murthy, S. Dixit, D. Berman and S. Berkebile, “Method for Tribological Experiment to Study Scuffing Initiation on AISI 52100 Steel and Hard Ceramic Coatings, Tribol. Int., 2021, 160, p 107001.

    Article  CAS  Google Scholar 

  25. D. Tejero-Martin, M.R. Rad, A. McDonald and T. Hussain, Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings, J. Therm. Spray Technol., 2019, 28, p 598–644. https://doi.org/10.1007/s11666-019-00857-1

    Article  CAS  Google Scholar 

  26. M. Oksa et al., Optimization and Characterization of High Velocity Oxy-Fuel Sprayed Coatings: Techniques, Materials, and Applications, Coatings, 2011, 1(1), p 17–52. https://doi.org/10.3390/coatings1010017

    Article  Google Scholar 

  27. A.M. Hodge and T.G. Nieh, Evaluating Abrasive Wear of Amorphous Alloys using Nanoscratch Technique, Intermetallics, 2004, 12, p 741–748. https://doi.org/10.1016/j.intermet.2004.02.014

    Article  CAS  Google Scholar 

  28. I. Hutchings and P. Shipway, Tribology: Friction and Wear of Engineering Materials, Butterworth-Heinemann, Oxford, 2017.

    Google Scholar 

  29. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24, p 981. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  30. Y.X. Ye, C.Z. Liu, H. Wang and T.G. Nieh, Friction and Wear Behavior of a Single-Phase Equiatomic TiZrHfNb High-Entropy Alloy Studied Using a Nanoscratch Technique, Acta Mater., 2018, 147, p 78–89. https://doi.org/10.1016/j.actamat.2018.01.014

    Article  CAS  Google Scholar 

  31. K. Kato, Abrasive Wear of Metals, Tribol. Int., 1997, 30, p 333–338. https://doi.org/10.1016/S0301-679X(96)00063-1

    Article  CAS  Google Scholar 

  32. N. Hua et al., Mechanical, Corrosion, and Wear Properties of Biomedical Ti-Zr-Nb-Ta-Mo High Entropy Alloys, J. Alloy. Compd., 2021, 861, 157997. https://doi.org/10.1016/j.jallcom.2020.157997

    Article  CAS  Google Scholar 

  33. L.O. Nyakiti and A.F. Jankowski, Characterization of Strain-Rate Sensitivity and Grain Boundary Structure in Nanocrystalline Gold-Copper Alloys, Metall. Mater. Trans. A, 2010, 41, p 838–847. https://doi.org/10.1007/s11661-009-9996-9

    Article  CAS  Google Scholar 

  34. C.A. Schuh, T.G. Nieh and T. Yamasaki, Hall-Petch Breakdown Manifested in Abrasive Wear Resistance of Nanocrystalline Nickel, Scripta Mater., 2002, 46, p 735–740. https://doi.org/10.1016/S1359-6462(02)00062-3

    Article  CAS  Google Scholar 

  35. M.A. Melia et al., High-Throughput Additive Manufacturing and Characterization of Refractory High Entropy Alloys, Appl. Mater. Today, 2020, 19, 100560. https://doi.org/10.1016/j.apmt.2020.100560

    Article  Google Scholar 

  36. S. Maiti and W. Steurer, Structural-Disorder and Its Effect on Mechanical Properties in Single-Phase TaNbHfZr High-Entropy Alloy, Acta Mater., 2016, 106, p 87–97. https://doi.org/10.1016/j.actamat.2016.01.018

    Article  CAS  Google Scholar 

  37. M. Srikanth et al., A Review of the Latest Developments in the Field of Refractory High-Entropy Alloys, Curr. Comput.-Aided Drug Des., 2021, 11, p 612. https://doi.org/10.3390/cryst11060612

    Article  CAS  Google Scholar 

  38. O.N. Senkov et al., Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19, p 698–706. https://doi.org/10.1016/j.intermet.2011.01.004

    Article  CAS  Google Scholar 

  39. M. Sadeghilaridjani et al., Strain Rate Sensitivity of a Novel Refractory High Entropy Alloy: Intrinsic Versus Extrinsic Effects, Mater. Sci. Eng., A, 2019, 766, 138326. https://doi.org/10.1016/j.msea.2019.138326

    Article  CAS  Google Scholar 

  40. Y. Xiao et al., Micro-Compression Studies of Face-Centered Cubic and Body-Centered Cubic High-Entropy Alloys: Size-Dependent Strength, Strain Rate Sensitivity, and Activation Volumes, Mater. Sci. Eng., A, 2020, 790, 139429. https://doi.org/10.1016/j.msea.2020.139429

    Article  CAS  Google Scholar 

  41. M. Sadeghilaridjani et al., Deformation and Tribological Behavior of Ductile Refractory High-Entropy Alloys, Wear, 2021, 478–479, 203916. https://doi.org/10.1016/j.wear.2021.203916

    Article  CAS  Google Scholar 

  42. Q. Wei et al., Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: FCC Versus BCC Metals, Mater. Sci. Eng., A, 2004, 381, p 71–79. https://doi.org/10.1016/j.msea.2004.03.064

    Article  CAS  Google Scholar 

  43. S.P. Fitzgerald, Kink Pair Production and Dislocation Motion, Sci. Rep., 2016, 6, p 39708. https://doi.org/10.1038/srep39708

    Article  CAS  Google Scholar 

  44. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583.

    Article  CAS  Google Scholar 

  45. P.S. Phani and W.C. Oliver, A Critical Assessment of the Effect of Indentation Spacing on the Measurement of Hardness and Modulus Using Instrumented Indentation Testing, Mater Design., 2019 https://doi.org/10.1016/j.matdes.2018.107563

    Article  Google Scholar 

  46. W.D. Nix and H. Gao, Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids, 1998, 46, p 411–425. https://doi.org/10.1016/S0022-5096(97)00086-0

    Article  CAS  Google Scholar 

  47. S. Gorsse et al., Database on the Mechanical Properties of High Entropy Alloys and Complex Concentrated Alloys, Data Brief, 2018, 21, p 2664–2678. https://doi.org/10.1016/j.dib.2018.11.111

    Article  CAS  Google Scholar 

  48. A. Xia et al., Angular-Dependent Deposition of MoNbTaVW HEA Thin Films by Three Different Physical Vapor Deposition Methods, Surf. Coat. Technol., 2020, 385, 125356. https://doi.org/10.1016/j.surfcoat.2020.125356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Tracking Number: 1344125

Type: FORMAL - Peer Review

Classification Level: Unclassified Unlimited Release, UUR

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Dixit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on High Entropy Alloy and Bulk Metallic Glass Coatings. The issue was organized by Dr. Andrew S.M. Ang, Swinburne University of Technology; Prof. B.S. Murty, Indian Institute of Technology Hyderabad; Distinguished Prof. Jien-Wei Yeh, National Tsing Hua University; Prof. Paul Munroe, University of New South Wales; Distinguished Prof. Christopher C. Berndt, Swinburne University of Technology. The issue organizers were mentored by Emeritus Prof. S. Ranganathan, Indian Institute of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, S., Rodriguez, S., Jones, M.R. et al. Refractory High-Entropy Alloy Coatings for High-Temperature Aerospace and Energy Applications. J Therm Spray Tech 31, 1021–1031 (2022). https://doi.org/10.1007/s11666-022-01324-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01324-0

Keywords

Navigation