Skip to main content
Log in

WC-Ti Coatings Deposited Via Cold Gas Spray and Modified by Laser and Furnace Heat Treatments

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This work is focused on furnace and laser post-treatment and characterization of WC-Ti cermet coatings obtained by cold gas spray technique. The main purposes of this study are (i) to find a suitable alternative to cobalt as metallic binder, since it has been listed as a critical material and (ii) to investigate the effects of different post-deposition heat treatments, carried out to trigger a self-propagating high-temperature synthesis reaction able to promote a partial and controlled decarburization of WC and the consequential in-situ nucleation of TiC micro/nano-precipitates. A standard furnace heat-treatment at 550 °C and different laser treatments were performed with the aim of increasing the overall coating microhardness.

The effects of the furnace and laser treatments on the WC-Ti coatings were evaluated in terms of microscopic, compositional and phase analyses and through preliminary block-on-ring sliding wear tests. The microstructure exhibited a good distribution of carbides, with an average size ranging from submicrometric to 5μm, and the XRD analysis revealed the formation of TiC in the laser-treated coatings. In the sliding wear tests, the laser-treated materials showed a significative reduction in the wear rate, with a weight loss up to 75% lower than both the furnace-treated and the as-sprayed coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.A. Picas, Y. Xiong, M. Punset, L. Ajdelsztajn, A. Forn and J.M. Schoenung, Microstructure and Wear Resistance of WC–Co by Three Consolidation Processing Techniques, Int. J. Refract. Met. Hard Mater., 2009, 27(2), p 344–349. https://doi.org/10.1016/j.ijrmhm.2008.07.002

    Article  CAS  Google Scholar 

  2. L. Baiamonte, G. Pulci, E. Hlede, F. Marra and C. Bartuli, Thermal Spray Coatings for Corrosion and Wear Protection of Naval Diesel Engines Components, Metall. Ital., 2014, 106(6), p 9–13.

    Google Scholar 

  3. A. Mateen, G.C. Saha, T.I. Khan and F.A. Khalid, Tribological Behaviour of HVOF Sprayed Near-Nanostructured and Microstructured WC-17wt.%Co Coatings, Surf. Coatings Technol., 2011, 206(6), p 1077–1084.

    Article  CAS  Google Scholar 

  4. A.H. Tkaczyk, A. Bartl, A. Amato, V. Lapkovskis and M. Petranikova, Sustainability Evaluation of Essential Critical Raw Materials: Cobalt, Niobium, Tungsten and Rare Earth Elements, J. Phys. D. Appl. Phys., 2018, 51(20), p 203001. https://doi.org/10.1088/1361-6463/aaba99

    Article  CAS  Google Scholar 

  5. S. van den Brink, R. Kleijn, B. Sprecher and A. Tukker, Identifying Supply Risks by Mapping the Cobalt Supply Chain, Resour. Conserv. Recycl., 2020, 156, p 104743.

    Article  Google Scholar 

  6. M. Suh, C.M. Thompson, G.P. Brorby, L. Mittal and D.M. Proctor, Inhalation Cancer Risk Assessment of Cobalt Metal, Regul. Toxicol. Pharmacol., 2016, 79, p 74–82.

    Article  CAS  Google Scholar 

  7. R.S. Lima, J. Karthikeyan, C.M. Kay, J. Lindemann and C.C. Berndt, Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings, Thin Solid Films, 2002, 416(1–2), p 129–135.

    Article  CAS  Google Scholar 

  8. S. Dosta, G. Bolelli, A. Candeli, L. Lusvarghi, I.G. Cano and J.M. Guilemany, Plastic Deformation Phenomena during Cold Spray Impact of WC-Co Particles onto Metal Substrates, Acta Mater., 2017, 124, p 173–181. https://doi.org/10.1016/j.actamat.2016.11.010

    Article  CAS  Google Scholar 

  9. C. Verdon, A. Karimi and J.L. Martin, A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures, Mater. Sci. Eng. A, 1998, 246(1–2), p 11–24.

    Article  Google Scholar 

  10. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 30(6), p 369–395.

    Article  CAS  Google Scholar 

  11. A. Papyrin, in The Cold Spray Materials Deposition Process: Fundamentals and Applications, ed. by V.K. Champagne. The development of the cold spray process (Elsevier, 2007), pp. 11–42. https://doi.org/10.1533/9781845693787

  12. R. Huang and H. Fukanuma, 6 - Future Trends in Cold Spray Techniques, N.B.T.-F.D. of T.S.C. Espallargas, Ed., Woodhead Publishing, 2015, p 143–162, https://doi.org/10.1016/B978-0-85709-769-9.00006-3.

  13. A. Nastic, D. MacDonald and B. Jodoin, The Influence of Feedstock Powder, Cold Spray in the Realm of Additive Manufacturing Materials Forming. S. Pathak, G. Saha Ed., Machining and Tribology. Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-42756-6_3

    Chapter  Google Scholar 

  14. S. Yin, E.J. Ekoi, T.L. Lupton, D.P. Dowling and R. Lupoi, Cold Spraying of WC-Co-Ni Coatings Using Porous WC-17Co Powders: Formation Mechanism, Microstructure Characterization and Tribological Performance, Mater. Des., 2017, 126, p 305–313.

    Article  CAS  Google Scholar 

  15. P. Matteazzi, A. Colella, V. Leshchynsky, K. Sakaki, H. Fukanuma and R.G. Maev, Cold Spray Powders and Equipment, Cold Gas Dynamic Spray. R.G. Maev, V. Leshchynsky Ed., Taylor & Francis Group, Boca Raton, 2016, p 75–138

    Chapter  Google Scholar 

  16. E.A. Levashov, A.S. Mukasyan, A.S. Rogachev and D.V. Shtansky, Self-Propagating High-Temperature Synthesis of Advanced Materials and Coatings, Int. Mater. Rev., 2017, 62(4), p 203–239.

    Article  CAS  Google Scholar 

  17. J. Tang, G.C. Saha, P. Richter, J. Kondas, A. Colella and P. Matteazzi, Effects of Post-Spray Heat Treatment on Hardness and Wear Properties of Ti-WC High-Pressure Cold Spray Coatings, J. Therm. Spray Technol., 2018, 27, p 1153–1164.

    Article  CAS  Google Scholar 

  18. D. Atong and D.E. Clark, Ignition Behavior and Characteristics of Microwave-Combustion Synthesized Al2O3-TiC Powders, Ceram Int, 2004, 30, p 1909–1912.

    Article  CAS  Google Scholar 

  19. Y. Bao, L. Huang, Q. An, S. Jiang, R. Zhang, L. Geng and X. Ma, Insights into Arc-Assisted Self-Propagating High Temperature Synthesis of TiB2-TiC Ceramic Coating via Wire-Arc Deposition, J. Eur. Ceram. Soc., 2020, 40, p 4381–4395.

    Article  CAS  Google Scholar 

  20. Y. Yuan, H. Wu, M. You, Z. Li and Y. Zhang, Improving Wear Resistance and Friction Stability of FeNi Matrix Coating by In-Situ Multi-Carbide WC-TiC via PTA Metallurgical Reaction, Surf. Coatings Technol., 2019, 378, p 124957.

    Article  CAS  Google Scholar 

  21. Y.S. Tian, C.Z. Chen, D.Y. Wang and T.Q. Lei, Laser Surface Modification of Titanium Alloys—A Review, Surface Rev. Lett., 2005, 12, p 123–130.

    Article  CAS  Google Scholar 

  22. W.M. Steen and J. Mazumder, Laser Material Processing, 4th ed. Springer science & business media, Berlin, 2010.

    Book  Google Scholar 

  23. Y.X. Li, J.D. Hu, H.Y. Wang and Z.X. Guo, Study of TiC/Ni3Al Composites by Laser Ignited Self-Propagating High-Temperature Synthesis (LISHS), Chem. Eng. J., 2008, 140(1–3), p 621–625. https://doi.org/10.1016/j.cej.2007.11.034

    Article  CAS  Google Scholar 

  24. Y. Li, J. Hu, Y. Liu, Z. Guo and S. Tosto, Effect of Process Parameter on the Combustion Temperature of Laser-Induced Self-Propagating High-Temperature Synthesized Al/TiC Composites, J. Mater. Process. Technol., 2009, 209(5), p 2564–2569. https://doi.org/10.1016/j.jmatprotec.2008.06.001

    Article  CAS  Google Scholar 

  25. M. Masanta, S.M. Shariff and A.R. Choudhury, Tribological Behavior of TiB2-TiC-Al2O3 Composite Coating Synthesized by Combined SHS and Laser Technology, Surf. Coatings Technol., 2010, 204, p 2527–2538.

    Article  CAS  Google Scholar 

  26. J. Li, C. Chen, Z. Lin and T. Squartini, Phase Constituents and Microstructure of Laser Cladding Al2O3/Ti3Al Reinforced Ceramic Layer on Titanium Alloy, J. Alloys Compd., 2011, 509(14), p 4882–4886. https://doi.org/10.1016/j.jallcom.2011.01.199

    Article  CAS  Google Scholar 

  27. T. Yamaguchi and H. Hagino, Formation of Titanium Carbide Layer by Laser Alloying with a Light-Transmitting Resin, Opt. Lasers Eng., 2017, 88, p 13–19.

    Article  Google Scholar 

  28. I. Hulka, D. Utu, V.A. Serban, P. Negrea, F. Lukáč and T. Chráska, Effect of Ti Addition on Microstructure and Corrosion Properties of Laser Cladded WC-Co/NiCrBSi(Ti) Coatings, Appl. Surf. Sci., 2020, 504, p 144349. https://doi.org/10.1016/j.apsusc.2019.144349

    Article  CAS  Google Scholar 

  29. K. Ushashri and M. Masanta, Hard TiC Coating on AISI304 Steel by Laser Surface Engineering Using Pulsed Nd:YAG Laser, Mater. Manuf. Process., 2015, 30(6), p 730–735. https://doi.org/10.1080/10426914.2014.973593

    Article  CAS  Google Scholar 

  30. A. Chehrghani, M.J. Torkamany, M.J. Hamedi and J. Sabbaghzadeh, Numerical Modeling and Experimental Investigation of TiC Formation on Titanium Surface Pre-Coated by Graphite under Pulsed Laser Irradiation, Appl. Surf. Sci., 2012, 258(6), p 2068–2076. https://doi.org/10.1016/j.apsusc.2011.04.064

    Article  CAS  Google Scholar 

  31. M.J. Hamedi, M.J. Torkamany and J. Sabbaghzadeh, Effect of Pulsed Laser Parameters on In-Situ TiC Synthesis in Laser Surface Treatment, Opt. Lasers Eng., 2011, 49(4), p 557–563. https://doi.org/10.1016/j.optlaseng.2010.12.002

    Article  Google Scholar 

  32. H.C. Man, Y.Q. Yang and W.B. Lee, Laser Induced Reaction Synthesis of TiC+WC Reinforced Metal Matrix Composites Coatings on Al 6061, Surf. Coatings Technol., 2004, 185(1), p 74–80.

    Article  CAS  Google Scholar 

  33. A. Gisario, M. Barletta and F. Veniali, Laser Surface Modification (LSM) of Thermally-Sprayed Diamalloy 2002 Coating, Opt. Laser Technol., 2012, 44(6), p 1942–1958. https://doi.org/10.1016/j.optlastec.2012.02.011

    Article  CAS  Google Scholar 

  34. L. Baiamonte, C. Bartuli, F. Marra, A. Gisario and G. Pulci, Hot Corrosion Resistance of Laser-Sealed Thermal- Sprayed Cermet Coatings, Coatings, 2019, 9(6), p 347.

    Article  CAS  Google Scholar 

  35. A. Gisario, M. Puopolo, S. Venettacci and F. Veniali, Improvement of Thermally Sprayed WC-Co/NiCr Coatings by Surface Laser Processing, Int. J. Refract. Met. Hard Mater., 2015, 52, p 123–130. https://doi.org/10.1016/j.ijrmhm.2015.06.001

    Article  CAS  Google Scholar 

  36. ASTM E384 - 17, Standard Test Method for Microindentation Hardness of Materials, ASTM Int., 2017, p 1–40.

  37. ASTM G77 - 17, Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test, ASTM Int., 2017.

  38. S. Usmani, S. Sampath, D.L. Houck and D. Lee, Effect of Carbide Grain Size on the Sliding and Abrasive Wear Behavior of Thermally Sprayed WC-Co Coatings, Tribol. Trans., 1997, 40(3), p 470–478.

    Article  CAS  Google Scholar 

  39. A. Ibrahim, H. Salem and S. Sedky, Excimer Laser Surface Treatment of Plasma Sprayed Alumina–13% Titania Coatings, Surf. Coatings Technol., 2009, 203(23), p 3579–3589. https://doi.org/10.1016/j.surfcoat.2009.05.034

    Article  CAS  Google Scholar 

  40. H. Hiraga, T. Inoue, S. Kamado, Y. Kojima, A. Matsunawa and H. Shimura, Fabrication of NiTi Intermetallic Compound Coating Made by Laser Plasma Hybrid Spraying of Mechanically Alloyed Powders, Surf. Coatings Technol., 2001, 139(1), p 93–100.

    Article  CAS  Google Scholar 

  41. M.J. Mas-Guindal, L. Contreras, X. Turrillas, G.B.M. Vaughan, Å. Kvick and M.A. Rodríguez, Self-Propagating High-Temperature Synthesis of TiC–WC Composite Materials, J. Alloys Compd., 2006, 419(1–2), p 227–233.

    Article  CAS  Google Scholar 

  42. C. Lyphout, G. Bolelli, E. Smazalova, K. Sato, J. Yamada, Š Houdková, L. Lusvarghi and T. Manfredini, Influence of Hardmetal Feedstock Powder on the Sliding Wear and Impact Resistance of High Velocity Air-Fuel (HVAF)Sprayed Coatings, Wear, 2019, 430–431, p 340–354.

    Article  Google Scholar 

  43. J. Pirso, S. Letunovitš and M. Viljus, Friction and Wear Behaviour of Cemented Carbides, Wear, 2004, 257(3–4), p 257–265.

    Article  CAS  Google Scholar 

  44. J.Z. Shao, J. Li, C.C. Qu, R. Song, L.L. Bai and J.L. Chen, Wear Analysis of the Composite Coating in a Long Sliding Time by Dissipated Energy Approach, Sci. Eng. Compos. Mater., 2017, 24(6), p 853–864. https://doi.org/10.1515/secm-2015-0235

    Article  CAS  Google Scholar 

  45. Q. Yang, T. Senda and A. Ohmori, Effect of Carbide Grain Size on Microstructure and Sliding Wear Behavior of HVOF-Sprayed WC-12% Co Coatings, Wear, 2003, 254(1–2), p 23–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Marra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baiamonte, L., Pulci, G., Gisario, A. et al. WC-Ti Coatings Deposited Via Cold Gas Spray and Modified by Laser and Furnace Heat Treatments. J Therm Spray Tech 30, 2083–2098 (2021). https://doi.org/10.1007/s11666-021-01278-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01278-9

Keywords

Navigation