Skip to main content

Deposition of Columnar-Morphology Lanthanum Zirconate Thermal Barrier Coatings by Solution Precursor Plasma Spraying

Abstract

Two types of precursor solutions, including lanthanum nitrate and lanthanum chloride, with zirconium acetate, were used to produce lanthanum zirconate coatings by solution precursor plasma spraying (SPPS). Thermal behavior of the precursor solutions, their rheological properties and atomization patterns were investigated by TGA–DSC, viscosity, surface tension and droplet size measurements, respectively. The chloride precursor led to the formation of impure lanthanum zirconate powder including LaOCl and ZrO2, while the nitrate precursor combined with zirconium acetate produced pure lanthanum zirconate powder after pyrolysis. Increasing the salt concentration from 0.125 to 0.5 M led to the formation of solutions with ~ 2.7 times higher viscosity but ~ 7% lower surface tension. The ethanol based solutions had smaller surface tension compared to the water based (24.3 mN/m vs. 62.7 mN/m), while being more viscous (4.8 cp vs. 3.2 cp). The most significant factor affecting the droplet size in atomized solutions was their viscosity. The 0.5 M water-based solutions with about 28 µm median size droplets injected into the plasma plume produced columnar morphology coatings with ~ 23 vol.% porosity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J. Zhang, X. Guo, Y. Jung, L. Li and J. Knapp, Lanthanum Zirconate Based Thermal Barrier Coatings: A Review, Surf. Coatings Technol., 2017, 323, p 18–29. https://doi.org/10.1016/j.surfcoat.2016.10.019

    CAS  Article  Google Scholar 

  2. 2.

    V. Kumar and B. Kandasubramanian, Processing and Design Methodologies for Advanced and Novel Thermal Barrier Coatings for Engineering Applications, Particuology, 2016, 27, p 1–28. https://doi.org/10.1016/j.partic.2016.01.007

    CAS  Article  Google Scholar 

  3. 3.

    R. Vassen, X. Cao, F. Tietz, D. Basu and D. Stover, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83(8), p 2023–2028.

    CAS  Article  Google Scholar 

  4. 4.

    D. Hasselman, L. Johnson, L.D. Bentsen, R. Syed, H.L. Lee and M.V. Swain, Thermal Diffusivity and Conductivity of Dense Polycrystal-Line ZrO2 Ceramics: A Survey, Am. Ceram. Soc. Bull., 1987, 66(5), p 799–806.

    CAS  Google Scholar 

  5. 5.

    K.W. Schlichting, N.P. Padture and P.G. Klemens, Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia, J. Mater. Sci., 2001, 36(12), p 3003–3010.

    CAS  Article  Google Scholar 

  6. 6.

    X.Q. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz and D. Stover, Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating, J. Am. Ceram. Soc., 2001, 84(9), p 2086–2090.

    CAS  Article  Google Scholar 

  7. 7.

    D.F. Zambrano, A. Barrios, L.E. Tobón and C. Serna, Thermal Properties and Phase Stability of Yttria-Stabilized Zirconia (YSZ) Coating Deposited by Air Plasma Spray onto a Ni-base Superalloy, Ceram. Int., 2018, 44(4), p 3625–3635. https://doi.org/10.1016/j.ceramint.2017.11.109

    CAS  Article  Google Scholar 

  8. 8.

    C. Jiang, E.H. Jordan, A.B. Harris, M. Gell and J. Roth, Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2015, 24(6), p 895–906. https://doi.org/10.1007/s11666-015-0283-6

    CAS  Article  Google Scholar 

  9. 9.

    Z. Lu, M.S. Kim and S.W. Myoung, Thermal Stability and Mechanical Properties of Thick Thermal Barrier Coatings with Vertical Type Cracks, Trans. Nonferrous Met. Soc. China, 2014, 24(1), p 29–35.

    Article  Google Scholar 

  10. 10.

    M.A. Subramanian, G. Aravamudan and G.V. Subba Rao, Oxide Pyrochlore—A Review, Prog. Solid State Chem., 1983, 15(2), p 55–143.

    CAS  Article  Google Scholar 

  11. 11.

    K.K. Rao, T. Banu, M. Vithal, G.Y.S.K. Swamy and K.R. Kumar, Preparation and Characterization of Bulk and Nano Particles of La2Zr2O7 by Sol–Gel Method, Mater. Lett., 2002, 54(2–3), p 205–210.

    Google Scholar 

  12. 12.

    J. Nair, P. Nair, E.B.M. Doesburg and J.G. Van Ommen, Preparation and Characterization of Lanthanum Zirconate, J. Mater. Sci., 1998, 33(18), p 4517–4523. https://doi.org/10.1023/A:1004496100596

    CAS  Article  Google Scholar 

  13. 13.

    X. Wang, Y. Zhu and W. Zhang, Preparation of Lanthanum Zirconate Nano-Powders by Molten Salts Method, J. Non. Cryst. Solids, 2010, 356(20–22), p 1049–1051. https://doi.org/10.1016/j.jnoncrysol.2010.01.016

    CAS  Article  Google Scholar 

  14. 14.

    J. Zhang, X. Guo, Y. Jung, L. Li and J. Knapp, Microstructural Non-Uniformity and Mechanical Property of air Plasma-Sprayed Dense Lanthanum Zirconate Thermal Barrier Coating, Mater. Today Proc., 2014, 1(1), p 11–16. https://doi.org/10.1016/j.matpr.2014.09.003

    Article  Google Scholar 

  15. 15.

    C. Wang, Y. Wang, L. Wang and G. Hao, Nanocomposite Lanthanum Zirconate Thermal Barrier Coating Deposited by Suspension Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(7), p 1030–1036. https://doi.org/10.1007/s11666-014-0068-3

    CAS  Article  Google Scholar 

  16. 16.

    S.B. Weber, H.L. Lein, T. Grande and M.A. Einarsrud, Deposition Mechanisms of Thick Lanthanum Zirconate Coatings by Spray Pyrolysis, J. Am. Ceram. Soc., 2011, 94(12), p 4256–4262. https://doi.org/10.1111/j.1551-2916.2011.04807.x

    CAS  Article  Google Scholar 

  17. 17.

    E.H. Jordan, C. Jiang and M. Gell, The Solution Precursor Plasma Spray (SPPS) Process: A Review With Energy Considerations, J. Therm. Spray Technol., 2015, 24(7), p 1153–1165. https://doi.org/10.1007/s11666-015-0272-9

    CAS  Article  Google Scholar 

  18. 18.

    A. Ganvir, R. Calinas, N. Markocsan, N. Curry and S. Joshi, Experimental Visualization of Microstructure Evolution During Suspension Plasma Spraying of Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2019, 39(2–3), p 470–481. https://doi.org/10.1016/j.jeurceramsoc.2018.09.023

    CAS  Article  Google Scholar 

  19. 19.

    N.P. Padture, K.W. Schlichting, T. Bhatia and A. Ozturk, Towards Durable Thermal Barrier Coatings With Novel Microstructures Deposited by Solution Precursor Plasma Spray, Acta Mater., 2001, 49, p 2251–2257. https://doi.org/10.1016/S1359-6454(01)00130-6

    CAS  Article  Google Scholar 

  20. 20.

    E.H. Jordan, L. Xie, M. Gell and N.P. Padture, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57–65. https://doi.org/10.1361/10599630418121

    CAS  Article  Google Scholar 

  21. 21.

    P. L. Fauchais, J. V. R. Heberlein, and M. I. Boulos, Thermal Spray Fundamentals: From Powder to Part. New York, 2014.

  22. 22.

    S. Basu and B.M. Cetegen, Modeling of Thermo-Physical Processes in Liquid Ceramic Precursor Droplets Injected into a Plasma Jet, Int. J. Heat Mass Transf., 2007, 50(17–18), p 3278–3290. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.036

    CAS  Article  Google Scholar 

  23. 23.

    A. Ozturk and B.M. Cetegen, Modeling of Plasma Assisted Formation of Precipitates in Zirconium Containing Liquid Precursor Droplets, Mater. Sci. Eng. A, 2004, 384(1–2), p 331–351. https://doi.org/10.1016/j.msea.2004.06.042

    CAS  Article  Google Scholar 

  24. 24.

    C.K. Muoto, E.H. Jordan, M. Gell and M. Aindow, Identification of Desirable Precursor Properties for Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2011, 20(4), p 802–816. https://doi.org/10.1007/s11666-011-9636-y

    CAS  Article  Google Scholar 

  25. 25.

    P. Fauchais, G. Montavon, R.S. Lima and B.R. Marple, Engineering a New Class of Thermal Spray Nano-Based Microstructures from Agglomerated Nanostructured Particles, Suspensions and Solutions: An Invited Review, J. Phys. D. Appl. Phys., 2011, 10, p 111. https://doi.org/10.1088/0022-3727/44/9/093001

    CAS  Article  Google Scholar 

  26. 26.

    S. Basu, E.H. Jordan and B.M. Cetegen, Fluid Mechanics and Heat Transfer of Liquid Precursor Droplets Injected into High-Temperature Plasmas, J. Therm. Spray Technol., 2008, 17(1), p 60–72. https://doi.org/10.1007/s11666-007-9140-6

    Article  Google Scholar 

  27. 27.

    A. Ozturk and B.M. Cetegen, Modeling of Axially and Transversely Injected Precursor Droplets into a Plasma Environment, Int. J. Heat Mass Transf., 2005, 48(21–22), p 4367–4383. https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.015

    CAS  Article  Google Scholar 

  28. 28.

    D. Chen, E.H. Jordan and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coatings Technol., 2008, 202(10), p 2132–2138. https://doi.org/10.1016/j.surfcoat.2007.08.077

    CAS  Article  Google Scholar 

  29. 29.

    W.Z. Wang, T. Coyle and D. Zhao, Preparation of Lanthanum Zirconate Coatings by the Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2014, 23(5), p 827–832. https://doi.org/10.1007/s11666-014-0084-3

    CAS  Article  Google Scholar 

  30. 30.

    W. Duarte, S. Rossignol and M. Vardelle, La2Zr2O7 (LZ) Coatings by Liquid Feedstock Plasma Spraying: The Role of Precursors, J. Therm. Spray Technol., 2014, 23(8), p 1425–1435. https://doi.org/10.1007/s11666-014-0131-0

    CAS  Article  Google Scholar 

  31. 31.

    Y. Chen, Q. Qian, X. Liu, L. Xiao and Q. Chen, LaOCl Nanofibers Derived from Electrospun PVA/Lanthanum Chloride Composite Fibers, Mater. Lett., 2010, 64(1), p 6–8. https://doi.org/10.1016/j.matlet.2009.09.042

    CAS  Article  Google Scholar 

  32. 32.

    A.H. Pelofsky, Surface Tension-Viscosity Relation for Liquids, J. Chem. Eng. Data, 1966, 11(3), p 394–397. https://doi.org/10.1021/je60030a031

    CAS  Article  Google Scholar 

  33. 33.

    G. Jones and M. Dole, The Viscosity of Aqueous Solutions of Strong Electrolytes with Special Reference to Barium Chloride, J. Phys. Chem., 1929, 51, p 2950–2964.

    CAS  Google Scholar 

  34. 34.

    H. Donald and B. Jenkins, Viscosity B-Coefficients of Ions in Solution, Chem. Rev., 1995, 95(8), p 2695–2724.

    Article  Google Scholar 

  35. 35.

    Y. Marcus, Effect of Ions on the Structure of Water, Chem. Rev., 2009, 109(3), p 1346–1370. https://doi.org/10.1351/PAC-CON-09-07-02

    CAS  Article  Google Scholar 

  36. 36.

    R.C. Weast, CRC Handbook of Chemistry and Physics, 62nd ed. CRC Press, Boca Raton, 1981.

    Google Scholar 

  37. 37.

    D.R. Lide, CRC Handbook of Chemistry and Physics, 79th ed. CRC Press, Boca Raton, 1998.

    Google Scholar 

  38. 38.

    R.T. Candidato, P. Sokołowski, L. Pawłowski and G. Lecomte-Nana, Development of Hydroxyapatite Coatings by Solution Precursor Plasma Spray Process and Their Microstructural Characterization, Surf. Coat. Technol., 2017, 318(3), p 39–49. https://doi.org/10.1016/j.surfcoat.2016.10.072

    CAS  Article  Google Scholar 

  39. 39.

    K. Vanevery, M.J.M. Krane, R.W. Trice, H. Wang and W. Porter, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817–828. https://doi.org/10.1007/s11666-011-9632-2

    CAS  Article  Google Scholar 

  40. 40.

    P. Fauchais, M. Vardelle, A. Vardelle and S. Goutier, What Do We Know, What are the Current Limitations of Suspension Plasma Spraying?, J. Therm. Spray Technol., 2015, 24(7), p 1120–1129. https://doi.org/10.1007/s11666-015-0286-3

    Article  Google Scholar 

  41. 41.

    F. Tarasi, E. Alebrahim, A. Dolatabadi and C. Moreau, Comparative Study of YSZ Suspensions and Coatings, Coatings, 2019 https://doi.org/10.3390/COATINGS9030188

    Article  Google Scholar 

  42. 42.

    M. Yaghtin, A. Yaghtin, P. Najafisayar, Z. Tang and T. Troczynski, Aging Behavior of Water-Based YSZ Suspensions for Plasma Spraying of Thermal Barrier Coatings. J. Therm. Spray Technol., 2021.

  43. 43.

    A. Ganvir, S. Joshi, N. Markocsan and R. Vassen, Tailoring Columnar Microstructure of Axial Suspension Plasma Sprayed TBCs for Superior Thermal Shock Performance, Mater. Des., 2018, 144, p 192–208. https://doi.org/10.1016/J.MATDES.2018.02.011

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Natural Science and Engineering Research Council Canada, within "Green Surface Engineering for Advanced Manufacturing" (Green-SEAM) Strategic Network, for this work. We also express gratitude to Northwest Mettech Corporation for the collaboration in coatings deposition as well as the University of Toronto, Centre for advanced Coating Technologies, for droplet particle size distribution measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maryam Yaghtin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the Results and discussion section, Figure 5 appeared with a spelling error in the y-axis label. In the Results and discussion section, the Figure 6 that appeared is a duplicate of Figure 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yaghtin, M., Yaghtin, A., Najafisayar, P. et al. Deposition of Columnar-Morphology Lanthanum Zirconate Thermal Barrier Coatings by Solution Precursor Plasma Spraying. J Therm Spray Tech (2021). https://doi.org/10.1007/s11666-021-01258-z

Download citation

Keywords

  • columnar structure
  • lanthanum zirconate
  • solution precursor plasma spraying