Skip to main content

Simulation of Supersonic High-Pressure Gas Atomizer for Metal Powder Production

Abstract

A comprehensive study was performed on the atomization of molten stainless steel in a high-pressure gas atomizer (HPGA). Computer simulations were carried out using ANSYS-FLUENT to model the supersonic, turbulent flow of the atomization gas. Particle tracking and solidification were also included in the model to determine the fate of molten particles within the atomizer. Experiments were performed to investigate the effect of varying gas pressure and nozzle diameter on particle size distribution, melt flow rate, and pressure gradients on the surface of the nozzle. It is shown that increasing the atomization pressure leads to a finer powder size distribution, but a lower powder throughput. The results and conclusions provided in this work provide a valuable insight into how various operating parameters can affect the performance of HPGAs for metal powder synthesis. The findings can be used to improve the design of these systems in terms of efficiency, throughput, and product quality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Abbreviations

\(v\), \(u\) :

Velocity

\(r\) :

Radial coordinate

\(x\) :

Axial coordinate

\(\rho\) :

Gas density

\(p\) :

Pressure

\({\mu }_{eff}\) :

Effective viscosity of gas

\(F\) :

Force (source term for momentum equation)

\(k\) :

Turbulent kinetic energy

\(\omega\) :

Specific dissipation rate

\({\tau }_{ij}\) :

Deviatoric stress tensor (viscous heating)

\(\Gamma\) :

Effective diffusivity

\(\mathrm{G}\) :

Production of turbulent kinetic energy or specific dissipation rate

\(\mathrm{Y}\) :

Dissipation of turbulent kinetic energy or specific dissipation rate

\(S\) :

Modulus of the mean rate of strain tensor

\(E\) :

Total energy

\({k}_{eff}\) :

Effective thermal conductivity of gas

\({S}_{h}\) :

Source term for energy equation

\(Pr\) :

Prandtl number

\({c}_{p}\) :

Specific heat capacity of gas

\(T\) :

Temperature

\(\overrightarrow{g}\) :

Gravitation acceleration

\({\rho }_{p}\) :

Density of particle

\({\tau }_{r}\) :

Particle relaxation time

\({d}_{p}\) :

Diameter of particle

\({C}_{d}\) :

Drag coefficient

\(Re\) :

Reynolds number

\({\mu }_{s}\), \({\mu }_{l}\) :

Dynamic viscosity of solid or liquid particle

\({C}_{s}, {C}_{l}\) :

Specific heat capacity of solid or liquid particle

\(\Delta H\) :

Latent heat of fusion

\({T}_{s}\), \({T}_{l}\) :

Solidus or liquids temperature

References

  1. 1.

    X.-G. Li and U. Fritsching, Process Modeling Pressure-Swirl-Gas-Atomization for Metal Powder Production, J. Mater. Process. Technol., 2017, 239, p 1–17.

    Article  Google Scholar 

  2. 2.

    D. Firmansyah, R. Kaiser, R. Zahaf, Z. Coker, T. Choi and D. Lee, Numerical Simulation of Supersonic Gas Atomization of Liquid Metal Droplets, Jpn. J. Appl. Phys., 2014, 53, p 05HA09.

    CAS  Article  Google Scholar 

  3. 3.

    G. Antipas, Gas Atomization of Aluminum Melts: Comparison of Analytical Models, Metals, 2012, 2(2), p 202–210.

    CAS  Article  Google Scholar 

  4. 4.

    J. Ting and I.E. Anderson, A Computational Fluid Dynamics (CFD) Investigation of the Wake Closure Phenomenon, Mater. Sci. Eng., 2004, 379, p 264–276.

    Article  Google Scholar 

  5. 5.

    N. Zeoli, H. Tabbara and S. Gu, Three-Dimensional Simulation of Primary Break-up in a Close-Coupled Atomizer, Appl. Phys. A Mater. Sci. Process., 2012, 108, p 783–792.

    CAS  Article  Google Scholar 

  6. 6.

    N. Zeoli and S. Gu, Numerical Modeling of Droplet Break-up for Gas Atomization, Comput. Mater. Sci., 2006, 38, p 282–292.

    CAS  Article  Google Scholar 

  7. 7.

    Cooper, K. P., Anderson, I. E., Ridder, S. D., and Biancaniello, Proc. Proceedings of TMS Annual Meeting in Nashville.

  8. 8.

    S.P. Mates and G.S. Settles, A Study of Liquid Metal Atomization using Close-Coupled Nozzles, Part 1: Gas Dynamic Behavior, Atom. Sprays, 2005, 15(1), p 19–40.

    CAS  Article  Google Scholar 

  9. 9.

    I.E. Anderson and R.L. Terpstra, Progress Toward Gas Atomization Processing with Increased Uniformity and Control, Mater. Sci. Eng. A, 2002, 326(1), p 101–109.

    Article  Google Scholar 

  10. 10.

    W. Zhao, F. Cao, Z. Ning, G. Zhang, Z. Li and J. Sun, A Computational Fluid Dynamics (CFD) Investigation of the Flow Field and the Primary Atomization of the Close Coupled Atomizer, Comput. Chem. Eng., 2012, 40, p 58–66.

    Article  Google Scholar 

  11. 11.

    Figliola, R. S., and Anderson, I. E., Characterization of High Pressure Gas Atomization Flow Fields. In: Proceedings Computational & Numerical Techniques in Powder Metallurgy.

  12. 12.

    J. Mi, R. Figliola and I. Anderson, A Numerical Simulation of Gas Flow Field Effects on High Pressure Gas Atomization due to Operating Pressure Variation, Mater. Sci. Eng. A, 1996, 208(1), p 20–29.

    Article  Google Scholar 

  13. 13.

    Fluent, A., 2019, Fluent 19.0 user’s guide. Ansys Fluent Inc.

  14. 14.

    D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, Inc., La Canada, 1998.

    Google Scholar 

  15. 15.

    H.S. Couto and D. Bastos-Netto, Generalized Liquid Film Atomization Theory, J. Thermal Sci., 2000, 9, p 265–270.

    CAS  Article  Google Scholar 

  16. 16.

    Liu, H., Numerical modelling of gas atomization in spray forming process. In: Proceedings of TMS Annual Meetings

  17. 17.

    A. Unal, Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminum Powders, Mater. Sci. Technol., 1987, 3, p 1029–1039.

    CAS  Article  Google Scholar 

  18. 18.

    J. Gretzinger and W.R. Marshal, Characteristics of Pneumatic Atomization, A.I.Ch.E J., 1961, 7(2), p 312–318.

    CAS  Article  Google Scholar 

  19. 19.

    M. Stefan, U. Fritsching and K. Bauckhage, Jet Break Up of Liquid Metal in Twin Fluid Atomization, Mater. Sci. Eng., 2002, A326, p 122–133.

    Google Scholar 

  20. 20.

    R. Kaiser, C. Li, S. Yang and D. Lee, A Numerical Simulation Study of the Path-Resolved Breakup Behaviors of Molten Metal in High-Pressure Gas Atomization: With Emphasis on the Role of Shock Waves in the Gas/Molten Metal Interaction, Adv. Powder Technol., 2018, 29, p 623–630.

    Article  Google Scholar 

  21. 21.

    Liu, A. B., Maher, D., and Reitz, R. D., 1993, Modeling the effects of drop drag and breakup on fuel sprays. SAE Technical Paper.

  22. 22.

    J.C. Beale and R.D. Reitz, Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model, Atom. Sprays, 1999, 9, p 623–650.

    Article  Google Scholar 

  23. 23.

    Patterson, M. A., and Reitz, R. D., 1998, Modeling the Effect of Fuel Spray Characteristics on Diesel Engine Combustion and Emission. SAE Techincal Paper.

  24. 24.

    A. Farrokhpanah, T.W. Coyle and J. Mostaghimi, Numerical Study of Suspension Plasma Spraying, J. Therm. Spray Technol., 2017, 26(1–2), p 12–36.

    Article  Google Scholar 

  25. 25.

    T.L. Bergman, F.P. Incropera, D.P. DeWitt and A.S. Lavine, Fundamentals of Heat and Mass Transfer, Wiley, London, 2011.

    Google Scholar 

  26. 26.

    B.J.S. Peter Pichler, J.W. Sowards and G. Pottlacher, Measurements of Thermophysical Properties of Solid and Liquid NIST SRM 316L Stainless Steel, J. Mater. Sci., 2020, 55, p 4081–4093.

    Article  Google Scholar 

  27. 27.

    R.H. Bogaard, P.D. Desai, H.H. Li and C.Y. Ho, Thermophysical Properties of Stainless Steels, Thermochim. Acta, 1993, 218, p 373–393.

    CAS  Article  Google Scholar 

  28. 28.

    C.S. Kim, Thermophysical Properties of Stainless Steels, Argonne National Laboratory, Illinois, USA, 1975.

    Book  Google Scholar 

  29. 29.

    T. Matsumoto, T. Misono, H. Fujii and K. Nogi, Surface Tension of Molten Stainless Steels under Plasma Conditions, J. Mater. Sci., 2005, 40, p 2197–2200.

    CAS  Article  Google Scholar 

  30. 30.

    K.C. Mills and R.F. Broof, Measurements of Thermophysical Properties in High Temperature Melts, Mater. Sci. Eng., A, 1994, 178, p 77–81.

    CAS  Article  Google Scholar 

  31. 31.

    B.J. Keene, K.C. Mills and R.F. Brooks, Surface Properties of Liquid Metals and Their Effects on Weldability, Mater. Sci. Technol., 1985, 1, p 559–567.

    Article  Google Scholar 

  32. 32.

    Z. Li, K. Mukai, M. Zeze and K. Mills, Determination of the Surface Tension of Liquid Stainless Steel, J. Mater. Sci., 2005, 40(9), p 2191–2195.

    CAS  Article  Google Scholar 

  33. 33.

    H. Lu and Q. Jiang, Surface Tension and its Temperature Coefficient for Liquid Metals, J. Phys. Chem. B, 2005, 109(32), p 15463–15468.

    CAS  Article  Google Scholar 

  34. 34.

    R. Unal, Improvements to Close Coupled Gas Atomisation Nozzle for Fine Powder Production, Powder Metall., 2007, 7(1), p 66–71.

    Article  Google Scholar 

  35. 35.

    G. Wolf and H.W. Bergmann, Investigations on Melt Atomization with Gas and Liquefied Cryogenic Gas, Mater. Sci. Eng. A, 2002, 326(1), p 134–143.

    Article  Google Scholar 

  36. 36.

    J. Gretzinger and W. Marshall Jr., Characteristics of Pneumatic Atomization, AIChE J., 1961, 7(2), p 312–318.

    CAS  Article  Google Scholar 

  37. 37.

    N. Ashgriz, Handbook of Atomization and Sprays: Theory and Applications, Springer, Berlin, 2011.

    Book  Google Scholar 

  38. 38.

    C.T. Crowe, Multiphase Flow Handbook, Taylor and Francis, London, 2006.

    Google Scholar 

  39. 39.

    H. Henein, V. Uhlenwinkle and U. Fritsching, Metal Sprays and Spray Deposition, Springer, Berlin, 2017.

    Book  Google Scholar 

  40. 40.

    O.D. Neikov, S.S. Naboychenko and N.A. Yefimov, Handbook of Non-Ferrous Metal Powders: Technologies and Applications, Elsevier, London, 2019.

    Google Scholar 

  41. 41.

    U. Fritsching, Spray Simulation: Modeling and Numerical Simulation of Sprayforming Metals, Cambridge University Press, Cambridge, 2004.

    Book  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Scientific Research Fund of High-end Control Valve Industry Technology Collaborative Innovation Center (No. 2018640001000067). Financial support of the Ningxia University and Wuzhong Instrument Company is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javad Mostaghimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Alavi, S., Kashani, A. et al. Simulation of Supersonic High-Pressure Gas Atomizer for Metal Powder Production. J Therm Spray Tech (2021). https://doi.org/10.1007/s11666-021-01256-1

Download citation

Keywords

  • CFD simulation
  • close-coupled atomizer
  • high-pressure gas atomization
  • metal powder synthesis