Thermal Swing Evaluation of Thermal Barrier Coatings for Diesel Engines


“Thermal swing” coatings have recently been of great interest to automotive researchers for their potential to insulate internal combustion engines, reduce cooling requirements, and increase their efficiency. Plasma-sprayed yttria-stabilized zirconia, ceramics in the MgO-Al2O3-SiO2 system (cordierite, mullite, and steatite), and silicate-yttria-stabilized zirconia composite thermal barriers have been investigated in this context with thermophysical properties measured using a thermal flash method and further screened by thermal swing using a custom laboratory developed functional test. Correlations between microstructure and thermal properties are developed and their combined impact on thermal swing assessed. The coatings thermal effusivity dominates these considerations for coatings above the characteristic thermal diffusion length of periodic exposure, with substrate thermal properties quickly becoming important below this thickness. Plasma-sprayed cordierite and its composites are determined to be the most promising materials for this application, exhibiting the highest thermal swing and effusivities as low as 373 Ws1/2/m2K. Performance testing in a heavy-duty single-cylinder diesel engine is ongoing with preliminary data suggesting that thermal swing alone may not provide efficiency benefits. Coating thickness, roughness, and dynamic interactions in the engine may play a role in this, highlighting that many potential nuances need consideration for the successful applications of these coatings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    S. Whitley, H. Chen, A. Doukas, I. Gencsu, and I. Gerasimchuk “G7 Fossil Fuel Subsidy Scorecard: Policy Brief,” ODI Policy Brief, 2018. Accessed 05 May 2020

  2. 2.

    A. Lajunen, P. Sainio, L. Laurila, J. Pippuri-Makelainen, and K. Tammi Overview of Powertrain Electrification and Future Scenarios for Non-Road Mobile Machinery, Energies, 2018, 11, p 1184

    Article  Google Scholar 

  3. 3.

    D. Reitz, H. Ogawa, R. Payri, T. Fansler, S. Kokjohn, Y. Moriyoshi, A. Agarwal, D. Arcoumanis, D. Assanis, C. Bae, K. Boulouchos, M. Canakci, S. Curran, I. Denbratt, M. Gavaises, M. Guenther, C. Hasse, Z. Huang, T. Ishiyama, B. Johansson, T. Johnson, G. Kalghatgi, M. Koike, S. Kong, A. Leipertz, P. Miles, R. Novella, A. Onorati, M. Richter, S. Shuai, D. Siebers, W. Su, M. Trujillo, N. Uchida, B. Vaglieco, R. Wagner, and W. Zhao IJER Editorial: The Future of the Internal Combustion Engine, IJER, 2019, 21(3), p 3-10

    Google Scholar 

  4. 4.

    D. Clarke, M. Oechsner, and N. Padture, MRS Bulletin: Thermal-Barrier Coatings for More Efficient Gas-turbine, Engiens, 2012, 37(10), p 891-898

    CAS  Google Scholar 

  5. 5.

    G. Woschni A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, SAE Technical Paper 670931, 1967

  6. 6.

    D. Siegla, and A. Alkidas “Evaluation of the Potential of a Low-Heat-Rejection Diesel Engine to Meet Future EPA Heavy-Duty Emission Standards,” SAE Technical Paper 890291, 1989

  7. 7.

    D. Assanis, K. Wiese, E. Schwarz, and W. Bryzik The Effects of Ceramic Coatings on Diesel Engine Performance and Exhaust Emissions, SAE Technical Paper 910460, 1991

  8. 8.

    T. Yonushonis Thick Thermal Barrier Coatings for Diesel Components, NASA Cr-187111, NASA LeRC, Cleveland, 1991

    Google Scholar 

  9. 9.

    A. Tricore, B. Kjellman, J. Wigren, M. Vanvolsem, and L. Aixala Insulated Piston Heads for Diesel Engines, J. Therm. Spray Techn., 2009, 18, p 217-222

    Article  Google Scholar 

  10. 10.

    R. Kamo, W. Bryzik, M. Reid, M. Woods Coatings for Improving Engine Performance, SAE Technical Paper 970204, 1997

  11. 11.

    D. Siegla, and A. Amann Exploratory Study of Low-Heat-Rejection Diesel for Passenger-Car Applications, SAE Technical Paper 840435, 1984

  12. 12.

    M. Vittal, J. Borek, D. Marks, A. Boehman, D. Okrent, and A. Bentz The Effects of Thermal Barrier Coatings on Diesel Engine Emissions, J. Eng. Gas Turb. Power, 1999, 121, p 218-225

    CAS  Article  Google Scholar 

  13. 13.

    V. Domakinda, and R. Puli Application of Thermal Barrier Coatings in Diesel Engines: a Review, Energy Power, 2012, 2(1), p 9-17

    Article  Google Scholar 

  14. 14.

    I. Kvernes, P. Fartum, and R. Henriksen Development of Engine Testing of Coatings on Diesel Engine Components, US DOE Reoprt E 1.28:HCP/T-4288, Central Institute for Industrial Research, Oslo, Norway, February 1978

  15. 15.

    R. Kamo, and W. Bryzik Adiabatic Turbocompound Engine Performance Prediction, SAE Technical Paper 780068, 1978

  16. 16.

    J. Heywood Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988

    Google Scholar 

  17. 17.

    R. Kamo, and W. Bryzik Cummins-TACOM Advanced Adiabatic Engine, SAE Technical Paper 840428, 1984

  18. 18.

    E. Frame High-Temperature Lubricants for Minimum-Cooled Diesel Engines, US Army TACOM Report AFLRL No. 171, Southwest Research Institute, San Antonio, TX, November 1983

  19. 19.

    T. Johnson Review of Diesel Emissions and Control, IJER, 2009, 10(5), p 275-285

    CAS  Google Scholar 

  20. 20.

    I. Kvernes, and E. Lugscheider Thick Thermal Barrier Coatings for Diesel Engines, Surf. Eng., 1995, 11(4), p 296-300

    CAS  Article  Google Scholar 

  21. 21.

    M.B. Beardsley Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components, USDOE Report 22580–1, Caterpillar Inc., Peoria, 2006

    Google Scholar 

  22. 22.

    Z. Yan, B. Gainey, J. Gohn, D. Hariharan, J. Saputo, C. Schmidt, F. Caliari, S. Sampath, and B. Lawler, The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion, SAE Technical Paper 2020-01-2075, 2020

  23. 23.

    T. Morel, R. Keribar, and P. Blumberg Cyclical Thermal Phenomena in Engine Combustion Chamber Surfaces, SAE Technical Paper 850360, 1985

  24. 24.

    D. Assanis A Computer Simulation of the Turbocharged Turbocompounded Diesel Engine System for Studies of Low Heat Rejection Engine Performance, PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA 1986

  25. 25.

    R. Kamo, D. Assanis, and W. Bryzik Thin Thermal Barrier Coatings for Engines, SAE Technical Paper: 890143, 1989

  26. 26.

    V. Wong, W. Bauer, R. Kamo, W. Bryzik, and M. Reid Assessment of Thing Thermal Barrier Coatings for I.C. Engines, SAE Technical Paper 950980, 1995

  27. 27.

    K. Mendera Effects of Plasma Sprayed Zirconia Coatings on Diesel Engine Heat Release, J. KONES Internal Comb. Engines, 2000, 7(1–2), p 382-389

    Google Scholar 

  28. 28.

    T. Hejwowski, and A. Weronski The Effect of Thermal Barrier Coatings on Diesel Engine Performance, Vacuum, 2002, 65, p 427-432

    CAS  Article  Google Scholar 

  29. 29.

    D. Tree, P Wiczynski, and T. Yonushonis Experimental Results on the Effect of Piston Surface Roughness and Porosity on Diesel Engine Combustion, SAE Technical Paper 960036, 1996

  30. 30.

    E. Gingrich, M. Tess, V. Korivi, P. Schihl, J. Saputo, G.M. Smith, and S. Sampath The Impact of Piston Thermal Barrier Coating Roughness on High-Load Diesel Operation, IJER, 2019

  31. 31.

    H. Kosaka, Y. Wakisaka, Y. Nomura, Y. Hotta, M. Koike, K. Nakakita, and A. Kawaguchi Concept of Temperature Swing Heat Insulation in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat, SAE Int. J. Engines, 2013, 6(1), p 142-149

    Article  Google Scholar 

  32. 32.

    Y. Wakisaka, M. Inayoshi, K. Fukui, H. Kosaka, Y. Hotta, A. Kawaguchi, and N. Takada Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of ‘Temperature Swing’ Insulation to Direct-Injection Diesel Engines, SAE Int. J. Engines, 2016, 9(3), p 1449-1459

    Article  Google Scholar 

  33. 33.

    D. Gatti, and M. Jansons One-Dimensional Modelling and Analysis of Thermal Barrier Coatings for Reduction of Cooling Loads in Military Vehicles, SAE Technical Paper 2018011112, 2018

  34. 34.

    P. Andruskiewicz, P. Najt, R. Durrett, S. Biesboer, T. Schaedler, and R. Payri Analysis of the Effects of Wall Temperature Swing on Reciprocating Internal Combustion Engine Processes, IJER, 2017, 19(4), p 461-473

    Google Scholar 

  35. 35.

    A. Salazar, On Thermal Diffusivity, Eur. J. Phys., 2003, 24, p 351-358

    CAS  Article  Google Scholar 

  36. 36.

    G. Koutsakis, and J. Ghandhi, An Analytical Approach for Calculating Instantaneous Multilayer-Coated Wall Surface Temperature in an Engine, SAE Technical Paper 2020-01-0160, 2020.

  37. 37.

    G. Smith, M. Resnick, B. Kjellman, J. Wigren, G. Dwivedi, and S. Sampath, Orientation-Dependent Mechanical and Thermal Properties of Plasma-Sprayed Ceramcis, J. Am. Ceram. Soc., 2018, 101(6), p 2471-2481

    CAS  Article  Google Scholar 

  38. 38.

    J. Kerrisk, Thermal Diffusivity of Heterogeneous Materials, J. Appl. Phys., 1971, 42(1), p 267-271

    CAS  Article  Google Scholar 

  39. 39.

    J. Kerrisk Thermal Diffusivity of Heterogeneous Materials. II. Limits of the Steady-State Approximation, J. Appl. Phys., 1972, 43(1), p 112-117

    CAS  Article  Google Scholar 

  40. 40.

    P. Furmanski Heat Conduction in Composites: homogenization and Macroscopic Behavior, Appl. Mech. Rev., 1997, 50(6), p 327-356

    Article  Google Scholar 

  41. 41.

    ASTM E1461-13, Standard test method for thermal diffusivity by the flash method, Annual Book of ASTM Standards, American Society for Testing and Materials, 2013

  42. 42.

    ASTM E2109-01, Standard Teset Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, Anual Book of ASTM Standards, American Society for Testing and Materials, 2014

  43. 43.

    W. Oberkampf, and M. Talpallikar Analysis of a High-Velocity Oxygen-Fuel (HVOF) Thermal Spray Torch Part 2: Computational Results, J Therm Spray Techn, 1996, 5(1), p 62-68

    CAS  Article  Google Scholar 

  44. 44.

    W. Swank, J. Fincke, D. Haggard, and G. Irons, “HOVF Gas Flow Field Characteristics” Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., June 20-24, 1994 (Boston, MA), ASM International, 1994, 800 p 313-318

  45. 45.

    ASTM E1933-14, Standard practice for measuring and compensating for emissivity using infrared imaging radiometers, Anual Book of ASTM Standards, American Society for Testing and Materials, 2018

  46. 46.

    C. Weiguang, S. Sampath, and H. Wang, Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2636-2645

    Article  Google Scholar 

  47. 47.

    A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability, Mat. Sci. Eng. A, 2008, 497, p 239-253

    Article  Google Scholar 

  48. 48.

    D. Dwivedi, T. Wentz, S. Sampath, and T. Nakamura, Assessing Process and Coating Reliability Through Monitoring of Process and Design Relevant Coating Properties, J. Therm. Spray Technol., 2010, 19(4), p 695-712

    CAS  Article  Google Scholar 

  49. 49.

    M. Mutter, G. Mauer, R. Mucke, O. Guillon, and R. Vassen, Correlation of Splat Morphologies with Porosity and Residual Stress in Plasma-Sprayed YSZ Coatings, Surf. Coat. Technol., 2017, 318, p 157-169

    CAS  Article  Google Scholar 

  50. 50.

    Wang H, Structure and Properties of Plasma-Sprayed Oxides in the MgO-Al2O3-SiO2 System, PhD Thesis, Stony Brook University, Stony Brook, NY 1989

  51. 51.

    E. Garcia, H. Lee, and S. Sampath, Phase and Microscturcture Evolution in Plasma Sprayed Yb2Si2O7 Coatings, J. Eur. Ceram. Soc., 2019, 39(4), p 1477-1486

    CAS  Article  Google Scholar 

  52. 52.

    M. Sainz, M. Osendi, and P. Miranzo, Protective Si-Al-O-Y Glass Coatings on Stainless Steel in situ Prepared by Combustion Flame Spraying, Surf. Coat. Technol., 2008, 202, p 1712-1717

    CAS  Article  Google Scholar 

  53. 53.

    E. Garcia, A. Nistal, F. Martin de la Esclera, A. Khalifa, M. Sainz, M. Osendi, and P. Miranzo, Thermally Sprayed Y2O3-Al2O3-SiO2 Coatings for High-Temperature Protection of Sic Ceramics, J. Therm. Spray Technol., 2015, 24, p 185-193

    CAS  Google Scholar 

  54. 54.

    Y. Wan, V. Prasad, G. Wang, S. Sampath, and J. Fincke, Model and Powder Particle Heating, Melting, Resolidification, and Evaporation in Plasma Spraying Processes, J. Heat Transfer, 1999, 121, p 691-699

    CAS  Article  Google Scholar 

  55. 55.

    W. Zhang and S. Sampath, A Universal Method for Respresentation of In-Flight Particle Characteristscs in Thermal Spray Processes, J. Therm. Spray Technol., 2008, 18(1), p 23-34

    Article  Google Scholar 

  56. 56.

    Jones E, Oliphant T, Peterson P, et al., SciPy: Open Source Scientific tools for Python,, 2001

Download references


The authors thank Mr. Steven Stoll and Mr. Steven Thrush at the US Army CCDC-GVSC, for their assistance in acquiring the engine data and the TBC surface characterization, respectively. This work was completed utilizing Army In-House Laboratory Independent Research (ILIR) basic research funds in coordination with the Office of Naval Research grant N00014-16-1-3036 to Stony Brook University.

Author information



Corresponding author

Correspondence to John C. Saputo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saputo, J.C., Smith, G.M., Lee, H. et al. Thermal Swing Evaluation of Thermal Barrier Coatings for Diesel Engines. J Therm Spray Tech 29, 1943–1957 (2020).

Download citation


  • composites
  • diesel engines
  • microstructure
  • thermal barrier coatings
  • thermal conductivity
  • thermal inertia
  • thermal swing