Skip to main content
Log in

Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Two common concerns in DC plasma torches are stability of plasma jet and anode erosion. The challenge is how to get a stable plasma jet with minimal anode erosion. This study tackles this question by using either a swirling gas injection or an external axial magnetic field applied to the Oerlikon SinplexPro™ plasma torch. A 3-D, time-dependent MHD model of the plasma torch operation was used to predict the value of the external magnetic field and its effect on the heat flux to the anode and plasma jet stability. The special feature of the model is to couple the gas phase and electrodes that makes it possible to follow the anode temperature evolution. For specific operation conditions (anode of Ø9 mm, 500 A, Ar 60 NLPM), the model predicted that the maximal value of the azimuthal self-magnetic field inducted by the arc current was 0.055 T; it also showed that an external magnetic field of 0.05 to 0.1 T could make it possible to limit the anode erosion without noticeably disturbing the plasma jet issuing from the plasma torch. We expect this approach to help to better understand the arc behavior in commercial plasma torches and control anode erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Z. Duan and J. Heberlein, Arc Instabilities in a Plasma Spray Torch, J. Therm. Spray Technol., 2002, 11, p 44-57

    Article  Google Scholar 

  2. E. Moreau, C. Chazelas, G. Mariaux, and A. Vardelle, Modeling the Restrike Mode Operation of a DC Plasma Spray Torch, J. Therm. Spray Technol., 2006, 15, p 524-530

    Article  Google Scholar 

  3. J.F. Coudert, V. Rat, and D. Rigot, Influence of Helmholtz Oscillations on Arc Voltage Fluctuations in a DC Plasma Spraying Torch, J. Phys. D Appl. Phys., 2007, 40, p 7357-7366

    Article  CAS  Google Scholar 

  4. V. Rat and J.F. Coudert, Improvement of Plasma Spray Torch Stability by Controlling Pressure and Voltage Dynamic Coupling, J. Therm. Spray Technol., 2011, 20, p 20-28

    Article  Google Scholar 

  5. M.F. Zhukov and I.M. Zasypkin, Thermal Plasma Torches, Cambridge Int Science Publishing, Cambridge, 2007

    Google Scholar 

  6. M.F. Zhukov, Electric arc Plasma Torches, Thermophysics Institute, Siberian Division of the Academy of Sciences, USSR, Novosibirsk, 1980 (in Russian)

    Google Scholar 

  7. R. Chidambaram Seshadri and R.S. Sampath, Characteristics of Conventional and Cascaded Arc Plasma Spray-Deposited Ceramic Under Standard and High-Throughput Conditions, J. Therm. Spray Technol., 2019, 28, p 690-705

    Article  Google Scholar 

  8. K. Bobzin and M. Öte, Modeling Multi-Arc Spraying Systems, J. Therm. Spray Technol., 2016, 25, p 920-932

    Article  Google Scholar 

  9. K.D. Landes, M. Dzulko, E. Theophile, and J. Zierhut, New Developments in DC Plasma Torches, High Temp. Mater. Process., 2002, 6(3), p 10

    Article  Google Scholar 

  10. P. Chyou and E. Pfender, Modeling of Plasma Jets with Superimposed Vortex Flow, Plasma Chem. Plasma Process., 1989, 9(2), p 291-32811

    Article  Google Scholar 

  11. C.L. Felipini and M.M. Pimenta, Some Numerical Simulation Results of Swirling Flow in D.C. Plasma Torch, J. Phys. Conf. Ser., 2015, 591, p 012038

    Article  Google Scholar 

  12. R. Westhoff and J. Szekely, Heat Flow, and Electromagnetic Phenomena in a Nontransferred Arc Plasma Torch, J. Appl. Phys., 1991, 70(7), p 3455-3466

    Article  CAS  Google Scholar 

  13. R.N. Szente, R.J. Munz, and M.G. Drouet, Arc Velocity and Cathode Erosion Rate in a Magnetically Driven Arc Burning in Nitrogen, J. Phys. D Appl. Phys., 1988, 21(6), p 909-913

    Article  CAS  Google Scholar 

  14. P. Kotalik and H. Nishiyama, An Effect of Magnetic Field on Arc Plasma Flow, IEEE Trans. Plasma Sci., 2002, 30(1), p 160-161

    Article  Google Scholar 

  15. J.M. Park, K.S. Kim, T.H. Hwang, and S.H. Hong, Three-Dimensional Modeling of Arc Root Rotation by External Magnetic Field in Non-Transferred Thermal Plasma Torches, IEEE Trans. Plasma Sci., 2004, 32(2), p 479-487

    Article  Google Scholar 

  16. M. Baeva and D. Uhrlandt, Non-Equilibrium Simulation of the Spatial and Temporal Behavior of a Magnetically Rotating Arc in Argon, Plasma Sources Sci Technol., 2011, 20(3), p 035008

    Article  Google Scholar 

  17. V. Nemchinsky, A Method to Reduce Electrode Erosion in a Magnetically Driven Rotating Arc, IEEE Trans. Plasma Sci., 2016, 44(12), p 3474-3478

    Article  Google Scholar 

  18. A.S. Prince, R.C. Bunker, and T. Lawrence, Plasma torch testing for thermostructural evaluation of rocket motor nozzle materials, in 25th Joint Propulsion Conference, Monterey, CA, July 10-13, 1989, p. 6

  19. K. Bobzin, M. Öte, M.A. Knoch, H. Heinemann, S. Zimmermann, and J. Schein, Influence of External Magnetic Fields on the Coatings of a Cascaded Plasma Generator, IOP Conf. Ser. Mater. Sci. Eng., 2019, 480, p 012004

    Article  CAS  Google Scholar 

  20. R. Zhukovski, C. Chazelas, A. Vardelle, V. Rat, and B. Distler, Effect of Boundary Conditions on Reliability of DC Plasma Models, submitted to J. Therm. Spray Technol.

  21. Guggenheim L, Schwenk A, Zimmermann S, Schein J, and Landes K Untersuchungen zum Einfluss von Permanentmagneten auf das physikalische Verhalten von kaskadierten, wandstabilisierten Lichtbögen und keramisch gespritzten Schichten, GTV Kolloquium Thermisches Spritzen & Laser Cladding (Luckenbach, 7.09.2018) ed K Nassenstein and K von Niessen, 2018, pp 95-101

  22. D. Halliday, Fundamentals of Physics, Vol 1, Wiley, New York, 2005

    Google Scholar 

  23. M. Alaya, C. Chazelas, and A. Vardelle, Parametric Study of Plasma Torch Operation Using a MHD Model Coupling the Arc and Electrodes, J. Therm. Spray Technol., 2015, 24(1-2), p 3-10

    Google Scholar 

  24. J.P. Trelles, C. Chazelas, A. Vardelle, and J.V.R. Heberlein, Arc Plasma Torch Modeling, J. Therm. Spray Technol., 2009, 18(5-6), p 728

    Article  Google Scholar 

  25. M. Shigeta, Turbulence Modelling of Thermal Plasma Flow, J. Phys. D Appl. Phys., 2016, 49, p 493001

    Article  Google Scholar 

  26. Code_Saturne https://www.code-saturne.org/cms/ Accessed 12 June 2019

  27. P. Freton, J.J. Gonzalez, M. Masquere, and F. Reichert, Magnetic Field Approaches in DC Thermal Plasma Modelling, J. Phys. D Appl. Phys., 2011, 44, p 202-345

    Article  Google Scholar 

  28. Code Saturne 5.0.0 Theory Guide, EDF R&D, 2017, p 393-398, in French https://www.code-saturne.org/cms/sites/default/files/docs/5.0/theory.pdf Accessed 12 June 2019

  29. A. Gleizes, J.J. Gonzalez, and P. Freton, Thermal Plasma Modelling, J. Phys. D Appl. Phys., 2005, 38, p R153

    Article  CAS  Google Scholar 

  30. Y. Abdo, V. Rohani, F. Cauneau, and L. Fulcheri, New Perspectives on the Dynamics of AC and DC Plasma Arcs Exposed to Cross-Fields, J. Phys. D Appl. Phys., 2017, 50(6), p 065203

    Article  Google Scholar 

  31. P. Fauchais, J.V.R. Heberlein, and M. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, NewYork, 2014, p 402

    Book  Google Scholar 

  32. V. Nemchinsky, Arc Discharge Anode Reattachment: Simple Model, IEEE Trans. Plasma Sci., 2014, 42, p 12

    Google Scholar 

  33. C. Chazelas, J.P. Trelles, and A. Vardelle, The Main Issues to Address in Modeling Plasma Spray Torch Operation, J. Therm. Spray Technol., 2017, 26(1-2), p 3-11

    Article  Google Scholar 

  34. J.P. Trelles, J.V.R. Heberlein, and E. Pfender, Non-equilibrium Modelling of Arc Plasma Torches, J. Phys. D Appl. Phys., 2007, 40(19), p 5937-5952

    Article  CAS  Google Scholar 

  35. P. Freton, J.J. Gonzalez, Z. Ranarijaona, and J. Mougenot, Energy Equation Formulations for Two Temperature Modelling of ‘Thermal’ Plasmas, J. Phys. D Appl. Phys., 2012, 45, p 465206

    Article  Google Scholar 

  36. J.P. Trelles and J.S. Modirkhazeni, Variational Multiscale Method for Nonequilibrium Plasma Flows, Comput. Methods Appl. Mech. Eng., 2014, 282, p 87-131

    Article  Google Scholar 

  37. P. Liang and R. Groll, Numerical Study of Plasma-Electrode Interaction During Arc Discharge in a DC Plasma Torch, IEEE Trans. Plasma Sci., 2018, 46(2), p 363-372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alexander Barth and Hartmut Koschnitzke, Oerlikon Metco Wohlen, Switzerland, Bernd Distler and Jose Colmenares, Oerlikon Metco, Westbury, USA, for valuable discussion, Yvan Fournier, EDF R&D, Chatou, France, for help with Code_Saturne and Frederic Bernaudeau and Nicolas Calvé, IRCER, for their technical help with the computers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodion Zhukovskii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 2019 International Thermal Spray Conference, held on May 26-29, 2019, in Yokohama, Japan, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovskii, R., Chazelas, C., Vardelle, A. et al. Control of the Arc Motion in DC Plasma Spray Torch with a Cascaded Anode. J Therm Spray Tech 29, 3–12 (2020). https://doi.org/10.1007/s11666-019-00969-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00969-8

Keywords

Navigation