Numerical Investigation of In-Flight Behavior of Fe-Based Amorphous Alloy Particles in AC-HVAF Thermal Spray Process

  • Hao-Ran Jiang
  • Mei-Ling Li
  • Xian-Shun WeiEmail author
  • Tian-Cai Ma
  • Yue Dong
  • Cheng-Xi Ying
  • Zong-Yi Liao
  • Jun Shen
Peer Reviewed


Computational fluid dynamics is used to investigate the in-flight behavior of particles of Fe-based amorphous alloy powder in an activated combustion high-velocity air fuel spray process. The continuity, momentum, energy, and species equations are solved with a renormalization group kε turbulence model to predict the flow fields. A one-step chemistry model and eddy-dissipation model are used to simulate the combustion reaction. The processing of the Fe-based amorphous alloy particles in the gas flow is modeled based on the Lagrangian approach. The predictions show that the static pressure and flame temperature of the combustion products in the combustion chamber can reach up to 515,000 Pa and 1600 K, respectively, under the conditions considered in this study. Both the temperature and velocity of the alloy particles are strongly affected by the powder particle size. The particle injection position also has a great influence on the particle temperature. The greater the deviation of the injection point from the centerline, the higher the particle temperatures. The nitrogen flow rate and particle size were projected as two important parameters to avoid nozzle clogging, revealing that high gas flow rates and large particles favor expansion of the particle stream in the radial section during the spray process.


AC-HVAF Fe-based amorphous alloy in-flight particle behavior numerical simulation 



This work is supported by the National Natural Science Foundation of China (51601129 and 51775386).


  1. 1.
    J. Shen, Q. Chen, J. Sun, and H. Fan, Appl. Phys. Lett., 2005, 86, p 151907CrossRefGoogle Scholar
  2. 2.
    D. Xu, G. Duan, and W.L. Johnson, Phys. Rev. Lett., 2004, 92, p 245504CrossRefGoogle Scholar
  3. 3.
    J. Shen, J. Zou, L. Ye, Z.P. Lu, D.W. Xing, M. Yan, and J.F. Sun, J. Non-Cryst. Solids, 2005, 351, p 2519-2523CrossRefGoogle Scholar
  4. 4.
    W.H. Wang, Prog. Mater. Sci., 2007, 52, p 540-596CrossRefGoogle Scholar
  5. 5.
    Q.J. Chen, H.B. Fan, L. Ye, S. Ringer, J.F. Sun, J. Shen, and D.G. Mccartney, Mater. Sci. Eng. A, 2005, 402, p 188-192CrossRefGoogle Scholar
  6. 6.
    D.D. Liang, X.S. Wei, C.T. Chang, J.W. Li, X.M. Wang, and J. Shen, J. Alloys Compd., 2018, 731, p 1146-1150CrossRefGoogle Scholar
  7. 7.
    D.D. Liang, X.S. Wei, T.C. Ma, B. Chen, H.R. Jiang, Y. Dong, and J. Shen, J. Non-Cryst. Solids, 2019, 510, p 62-70CrossRefGoogle Scholar
  8. 8.
    D.D. Liang, X.S. Wei, Y. Wang, H.R. Jiang, and J. Shen, J. Alloys Compd., 2018, 766, p 964-972CrossRefGoogle Scholar
  9. 9.
    D.-D. Liang, X.-S. Wei, C.-T. Chang, J.-W. Li, Y. Wang, X.-M. Wang, and J. Shen, Acta Metall. Sin., 2018, 31, p 1098-1108CrossRefGoogle Scholar
  10. 10.
    D. Wang, H. Tan, and Y. Li, Acta Mater., 2005, 53, p 2969-2979CrossRefGoogle Scholar
  11. 11.
    A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Acta Mater., 2001, 49, p 2645-2652CrossRefGoogle Scholar
  12. 12.
    Y. Pan, Y. Zeng, L. Jing, L. Zhang, and J. Pi, Mater. Des., 2014, 55, p 773-777CrossRefGoogle Scholar
  13. 13.
    W.Z. Liang, J. Shen, and J.F. Sun, J. Alloys Compd., 2006, 420, p 94-97CrossRefGoogle Scholar
  14. 14.
    G. Wang, H.B. Fan, Y.J. Huang, J. Shen, and Z.H. Chen, Mater. Des., 2014, 54, p 251-255CrossRefGoogle Scholar
  15. 15.
    G. Wang, Z. Huang, P. Xiao, and X. Zhu, J. Manuf. Process., 2016, 22, p 34-38CrossRefGoogle Scholar
  16. 16.
    N. Zeoli, S. Gu, and S. Kamnis, Comput. Chem. Eng., 2008, 32, p 1661-1668CrossRefGoogle Scholar
  17. 17.
    D. Shi, A. Mingheng Li, P.D. Christofides, Industrial and Engineering Chemistry Research, 43 (2004) 3653-3665.Google Scholar
  18. 18.
    X. Wang, Q. Song, and Z. Yu, J. Therm. Spray Technol., 2016, 25, p 441-450CrossRefGoogle Scholar
  19. 19.
    Y. Wang, Z.Z. Xing, Q. Luo, A. Rahman, J. Jiao, S.J. Qu, Y.G. Zheng, and J. Shen, Corros. Sci., 2015, 98, p 339-353CrossRefGoogle Scholar
  20. 20.
    R.K. Kumar, M. Kamaraj, S. Seetharamu, and S.A. Kumar, Mater. Des., 2017, 132, p 79-95CrossRefGoogle Scholar
  21. 21.
    A.P. Wang, T. Zhang, and H.Q. Wang, Mater. Trans., 2005, 46, p 1010-1015CrossRefGoogle Scholar
  22. 22.
    M.H. Gao, W.Y. Lu, B.J. Yang, S.D. Zhang, and J.Q. Wang, J. Alloys Compd., 2018, 735, p 1363-1373CrossRefGoogle Scholar
  23. 23.
    J. Jiao, Q. Luo, X. Wei, S. Qu, Y. Wang, and J. Shen, Int. J. Electrochem. Sci., 2018, 13, p 5522-5534Google Scholar
  24. 24.
    J. Jiao, Q. Luo, X. Wei, Y. Wang, and J. Shen, J. Alloys Compd., 2017, 714, p 356-362CrossRefGoogle Scholar
  25. 25.
    R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, and L. Liu, Corros. Sci., 2011, 53, p 2351-2356CrossRefGoogle Scholar
  26. 26.
    Q. Luo, Y.J. Sun, J. Jiao, Y.X. Wu, S.J. Qu, and J. Shen, Surf. Coat. Technol., 2018, 334, p 253-260CrossRefGoogle Scholar
  27. 27.
    H.R. Ma, J.W. Li, J. Jiao, C.T. Chang, G. Wang, J. Shen, X.M. Wang, and R.W. Li, Mater. Sci. Technol., 2017, 33, p 65-71CrossRefGoogle Scholar
  28. 28.
    H. Tabbara and S. Gu, Surf. Coat. Technol., 2009, 204, p 676-684CrossRefGoogle Scholar
  29. 29.
    W.Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C.J. Li, and C. Coddet, Mater. Des., 2008, 29, p 297-304CrossRefGoogle Scholar
  30. 30.
    S. Gu, C.N. Eastwick, K.A. Simmons, and D.G. Mccartney, J. Therm. Spray Technol., 2001, 10, p 461-469CrossRefGoogle Scholar
  31. 31.
    M. Li and P.D. Christofides, Chem. Eng. Sci., 2005, 60, p 3649-3669CrossRefGoogle Scholar
  32. 32.
    M. Li, D. Shi, and P.D. Christofides, Powder Technol., 2005, 156, p 177-194CrossRefGoogle Scholar
  33. 33.
    M. Li and P.D. Christofides, Chem. Eng. Sci., 2006, 61, p 6540-6552CrossRefGoogle Scholar
  34. 34.
    D. Shi, A. Mingheng, M. Li, and P.D. Christofides, Ind. Eng. Chem. Res., 2004, 43, p 3653-3665CrossRefGoogle Scholar
  35. 35.
    M. Jadidi, S. Moghtadernejad, and A. Dolatabadi, J. Therm. Spray Technol., 2016, 25, p 1-14CrossRefGoogle Scholar
  36. 36.
    H. Jafari, S. Emami, and Y. Mahmoudi, Appl. Therm. Eng., 2017, 111, p 745-758CrossRefGoogle Scholar
  37. 37.
    M. Li and P.D. Christofides, J. Therm. Spray Technol., 2009, 18, p 753-768CrossRefGoogle Scholar
  38. 38.
    ANSYS, Fluent Documentation, (2011).Google Scholar
  39. 39.
    M.N. Khan and T. Shamim, Appl. Energy, 2014, 130, p 853-862CrossRefGoogle Scholar
  40. 40.
    X. Yang and S. Eidelman, J. Therm. Spray Technol., 1996, 5, p 175-184CrossRefGoogle Scholar
  41. 41.
    D. Cheng, Q. Xu, G. Tapaga, and E.J. Lavernia, Metall. Mater. Trans. A, 2001, 32, p 1609-1620CrossRefGoogle Scholar
  42. 42.
    D. Cheng, Q. Xu, E.J. Lavernia, and G. Trapaga, Metall. Mater. Trans. B, 2001, 32, p 525-535CrossRefGoogle Scholar
  43. 43.
    C.H. Chang and R.L. Moore, J. Therm. Spray Technol., 1995, 4, p 358-366CrossRefGoogle Scholar
  44. 44.
    S. Kamnis and S. Gu, Chem. Eng. Process., 2006, 45, p 246-253CrossRefGoogle Scholar
  45. 45.
    S. Kamnis, S. Gu, and N. Zeoli, Surf. Coat. Technol., 2008, 202, p 2715-2724CrossRefGoogle Scholar
  46. 46.
    A. Dolatabadi, J. Mostaghimi, and V. Pershin, Sci. Technol. Adv. Mater., 2002, 3, p 245-255CrossRefGoogle Scholar
  47. 47.
    B.J.M.S. Gordon, NASA Reference Publication 1311, (1994).Google Scholar
  48. 48.
    H.R. Ma, J. Li, J. Jiao, C. Chang, G. Wang, J. Shen, X.M. Wang, R.-W. Li, Wear resistance of Fe-based amorphous coatings prepared by AC-HVAF and HVOF, 2016.Google Scholar
  49. 49.
    J.S. Baik and Y.J. Kim, Surf. Coat. Technol., 2008, 202, p 5457-5462CrossRefGoogle Scholar
  50. 50.
    S. Emami, H. Jafari, and Y. Mahmoudi, J. Therm. Spray Technol., 2019, 28, p 333-345CrossRefGoogle Scholar
  51. 51.
    V.R. Srivatsan and A. Dolatabadi, J. Therm. Spray Technol., 2006, 15, p 481-487CrossRefGoogle Scholar
  52. 52.
    J. Pan, S. Hu, L. Yang, K. Ding, and B. Ma, Mater. Des., 2016, 96, p 370-376CrossRefGoogle Scholar
  53. 53.
    E. Dongmo, M. Wenzelburger, and R. Gadow, Surf. Coat. Technol., 2008, 202, p 4470-4478CrossRefGoogle Scholar
  54. 54.
    S.V. Joshi and R. Sivakumar, Surf. Coat. Technol., 1991, 50, p 67-74CrossRefGoogle Scholar
  55. 55.
    S. Kamnis, S. Gu, and N. Zeoli, Surf. Coat. Technol., 2008, 202, p 2715-2724CrossRefGoogle Scholar
  56. 56.
    R. Busch, J. Schroers, and W.H. Wang, MRS Bull., 2011, 32, p 620-623CrossRefGoogle Scholar
  57. 57.
    B. Bochtler, O. Gross, I. Gallino, and R. Busch, Acta Mater., 2016, 118, p 129-139CrossRefGoogle Scholar
  58. 58.
    K.A. Khor, H. Li, and P. Cheang, Biomaterials, 2004, 25, p 1177-1186CrossRefGoogle Scholar
  59. 59.
    D. Cheng, G. Trapaga, J.W. Mckelliget, and E.J. Lavernia, Key Eng. Mater., 2001, 197, p 1-26CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Physical DepartmentAnshan Normal CollegeAnshanChina
  3. 3.Shanghai Key Laboratory for R&D and Application of Metallic Functional MaterialsTongji UniversityShanghaiChina
  4. 4.College of AutomotiveTongji UniversityShanghaiChina
  5. 5.College of Mechatronics and Control EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations