Journal of Thermal Spray Technology

, Volume 28, Issue 6, pp 1173–1184 | Cite as

Tailored Porosity for Polymer Infiltration in Stainless Steel Coatings

  • Alexandre R. C. NascimentoEmail author
  • Sudarshan Devaraj
  • Alan Polato Francelin
  • Sylvio Savoie
  • Robert Schulz
  • Christian Moreau
Peer Reviewed


In this work, a new method for the development of polymer-infiltrated bond coatings is presented. Substrate surfaces are coated by high-velocity oxygen fuel spraying, with a powder mixture containing a stainless steel (SS444) matrix and an iron aluminide (Fe3Al) pore former. Prior to polymer infiltration, acid leaching in 0.5 M HCl solution was used to remove the pore-forming phase. To control total porosity and pore size distribution, nine different feedstock blends were prepared with varying volume fractions and size distributions of SS444 and Fe3Al particles. It was found that the leaching rates are strongly dependent on the solution temperature. Moreover, higher in-flight oxidation leads to significant chemical and mechanical degradation of the deposited SS444 splats. The as-leached coatings mechanical integrity was poor, and a sintering heat treatment at 1300 °C for 1 h was crucial for the development of appreciable coating strength. It was shown that a mixture of polyimide binder and 25 wt.% graphite can be infiltrated in pores with pore openings as narrow as 10 µm. The present research results could be impactful for any application requiring large surfaces to be coated with a metal-polymer composite layer without the use of adhesives or glues.


bond coatings porosity sealing stainless steel 



The authors would like to express their gratitude to Prof. Dr. Richard Chromik and Dr. Yinyin Zhang for their suggestions in the methodology for the preparation of the polyimide composites which proved essential for the achieved results. The authors are also grateful for the financial support provided by NSERC and Hydro-Québec.


  1. 1.
    G.W. Stachowiak and A.W. Batchelor, Engineering Tribology, 4th ed., chapter 9. Solid Lubrication and Surface Treatments, 2005, pp. 419-459Google Scholar
  2. 2.
    G.W. Stachowiak and A.W. Batchelor, Engineering Tribology, 4th ed., chapter 16. Wear of Non-metallic Materials, 2005, pp. 651-704Google Scholar
  3. 3.
    P. Samyn and G. Schoukens, The Effect of Processing Method on Dry Sliding Performance of Polyimides at High Load/High Velocity Conditions, Eur. Polym. J., 2008, 44(3), p 716-732CrossRefGoogle Scholar
  4. 4.
    U.S. Tewari and J. Bijwe, Comparative Studies on Sliding Wear of Polyimide Composites, Composites, 1991, 22(3), p 204-210CrossRefGoogle Scholar
  5. 5.
    P. Samyn, P. De Baets, G. Schoukens, and B. Hendrickx, Tribological Behavior of Pure and Graphite-Filled Polyimides Under Atmospheric Conditions, Polym. Eng. Sci., 2003, 43(8), p 1477-1487CrossRefGoogle Scholar
  6. 6.
    G. Theiler and T. Gradt, Tribological Characteristics of Polyimide Composites in Hydrogen Environment, Tribol. Int., 2015, 92, p 162-171CrossRefGoogle Scholar
  7. 7.
    M. Lv, F. Zheng, Q. Wang, T. Wang, and Y. Liang, Effect of Proton Irradiation on the Friction and Wear Properties of Polyimide, Wear, 2014, 316(1–2), p 30-36CrossRefGoogle Scholar
  8. 8.
    M. Lv, F. Zheng, Q. Wang, T. Wang, and Y. Liang, Friction and Wear Behaviors of Carbon and Aramid Fibers Reinforced Polyimide Composites in Simulated Space Environment, Tribol. Int., 2015, 92, p 246-254CrossRefGoogle Scholar
  9. 9.
    Y. Nakamura, Y. Suzuki, and Y. Watanabe, Effect of Oxygen Plasma Etching on Adhesion Between Polyimide Films and Metal, Thin Solid Films, 1996, 291, p 367-369CrossRefGoogle Scholar
  10. 10.
    S.T. Amancio-Filho and J.F. dos Santos, Joining of Polymers and Polymer-Metal Hybrid Structures: Recent Developments and Trends, Polym. Eng. Sci., 2009, 49(8), p 1461-1476CrossRefGoogle Scholar
  11. 11.
    G.C. Pratt and W.H. Wilson, The Performance of Steel-Backed Acetal Copolymer Bearings, Wear, 1968, 12(2), p 73-90CrossRefGoogle Scholar
  12. 12.
    Z. Liming, L. Yongyao, W. Zhengwei, L. Xin, and X. Yexiang, A Review on the Large Tilting Pad Thrust Bearings in the Hydropower Units, Renew. Sustain. Energy Rev., 2017, 69, p 1182-1198CrossRefGoogle Scholar
  13. 13.
    R. Gawarkiewicz and M. Wasilczuk, Wear Measurements of Self-Lubricating Bearing Materials in Small Oscillatory Movement, Wear, 2007, 263, p 458-462CrossRefGoogle Scholar
  14. 14.
    H.E. Sliney, Wide Temperature Spectrum Self-Lubricating Coatings Prepared by Plasma Spraying, Thin Solid Films, 1979, 64(2), p 211-217CrossRefGoogle Scholar
  15. 15.
    C. Tekmen, K. Iwata, Y. Tsunekawa, and M. Okumiya, Controlling Graphite Content in Plasma Sprayed Cast Iron Coatings Via In-Flight Particle Diagnostic, J. Mater. Process. Technol., 2009, 209(14), p 5417-5422CrossRefGoogle Scholar
  16. 16.
    C. Tekmen, K. Iwata, Y. Tsunekawa, and M. Okumiya, Influence of Methane and Carbon Dioxide on In-Flight Particle Behavior of Cast Iron Powder By Atmospheric Plasma Spraying, Mater. Lett., 2009, 63(28), p 2439-2441CrossRefGoogle Scholar
  17. 17.
    J. Knuuttila, P. Sorsa, T. Mäntylä, J. Knuuttila, and P. Sorsa, Sealing of Thermal Spray Coatings By Impregnation, J. Therm. Spray Technol., 1999, 8, p 249-257CrossRefGoogle Scholar
  18. 18.
    S.-L. Zhang, C.-X. Li, C.-J. Li, and G.-J. Yang, Microstructure and Properties of Porous Ni50Cr50-Al2O3 Cermet Support for Solid Oxide Fuel Cells, J. Therm. Spray Technol., 2013, 22, p 158-165CrossRefGoogle Scholar
  19. 19.
    M. Gupta, A. Weber, N. Markocsan, and N. Heiden, Development of Plasma Sprayed Ni/YSZ Anodes for Metal Supported Solid Oxide Fuel Cells, Surf. Coat. Technol., 2017, 318, p 178-189CrossRefGoogle Scholar
  20. 20.
    D. Aussavy et al., YSZ-Polyester Abradable Coatings Manufactured by APS, J. Therm. Spray Technol., 2016, 25, p 252-263CrossRefGoogle Scholar
  21. 21.
    M. Arai and T. Suidzu, Porous Ceramic Coating for Transpiration Cooling of Gas Turbine Blade, J. Therm. Spray Technol., 2013, 22, p 690-698CrossRefGoogle Scholar
  22. 22.
    J. Medřický et al., Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former, J. Therm. Spray Technol., 2015, 24(4), p 622-628CrossRefGoogle Scholar
  23. 23.
    J.H. Schneibel, H. Rühe, M. Heilmaier, H. Saage, M. Goncharenko, and P. Loboda, Low Cycle Fatigue of Fe3Al-Based Iron Aluminide With and Without Cr, Intermetallics, 2010, 18(7), p 1369-1374CrossRefGoogle Scholar
  24. 24.
    M. Li and P.D. Christofides, Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review, J. Therm. Spray Technol., 2009, 18(5-6), p 753-768CrossRefGoogle Scholar
  25. 25.
    D. Cheng, Q. Xu, G. Trapaga, E.J. Lavernia, and I. Introduction, The Effect of Particle Size and Morphology on the In-Flight, Metall. Mater. Trans. B, 2001, 32, p 525-535CrossRefGoogle Scholar
  26. 26.
    J.N. Taneja, Dissolution of Iron in Hydrochloric Acid, Ph.D. Thesis, University of Windsor, 1967Google Scholar
  27. 27.
    J. Kawakita, T. Fukushima, S. Kuroda, and T. Kodama, Corrosion behaviour of HVOF sprayed SUS316L stainless steel in seawater, Corros. Sci., 2011, 44(11), p 2561-2581CrossRefGoogle Scholar
  28. 28.
    J. Kawakita, S. Kuroda, T. Fukushima, and T. Kodama, Corrosion Resistance of HVOF Sprayed HastelloyC Nickel Base Alloy in Seawater, Corros. Sci., 2003, 45(12), p 2819-2835CrossRefGoogle Scholar
  29. 29.
    B.H. Kim, H. Park, H. Park, and D.C. Moon, Degree of Imidization for Polyimide Films Investigated by Evolved Gas Analysis-Mass Spectrometry, Thermochim. Acta, 2013, 551, p 184-190CrossRefGoogle Scholar
  30. 30.
    D. Pinson, R.P. Zou, A.B. Yu, P. Zulli, and M.J. McCarthy, Coordination Number of Binary Mixture of Spheres, J. Phys. D. Appl. Phys., 1998, 31, p 457-462CrossRefGoogle Scholar
  31. 31.
    I. Biazzo, F. Caltagirone, G. Parisi, and F. Zamponi, Theory of Amorphous Packings of Binary Mixtures of Hard Spheres, Phys. Rev. Lett., 2009, 102(19), p 1-4CrossRefGoogle Scholar
  32. 32.
    T.C. Hanson and G.S. Settles, Particle Temperature and Velocity Effects on the Porosity and Oxidation of an HVOF Corrosion-Control Coating, J. Therm. Spray Technol., 2003, 12(3), p 403-415CrossRefGoogle Scholar
  33. 33.
    J.T. Yao, J.Q. Ren, H. Bin Huo, G.J. Yang, C.X. Li, and C.J. Li, Deposition behavior of semi-molten spray particles during flame spraying of porous metal alloy, J. Therm. Spray Technol., 2014, 23(6), p 991-999CrossRefGoogle Scholar
  34. 34.
    P. Crook, Corrosion of Nickel and Nickel-Base Alloys in Corrosion: Materials, Vol 13B, ASM Handbook, ASM International, Materials Park, 2005, p 228-251Google Scholar
  35. 35.
    C. Feng, S. Yugeswaran, and S. Chandra, Capillary Rise of Liquids in Thermally Sprayed Porous Copper Wicks, Exp. Therm. Fluid Sci., 2018, 98, p 206-216CrossRefGoogle Scholar
  36. 36.
    P. Tallafuss and J. Johnston, Defects, Causes and Prevention Controls in the Continuous Bronze/Steel Bimetal Strip Sintering Process, Eng. Fail. Anal., 2018, 92, p 32-43CrossRefGoogle Scholar
  37. 37.
    F. Martin, C. García, and Y. Blanco, Influence of Residual Porosity on the Dry and Lubricated Sliding Wear of a Powder Metallurgy Austenitic Stainless Steel, Wear, 2015, 328-329, p 1-7CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Alexandre R. C. Nascimento
    • 1
    Email author
  • Sudarshan Devaraj
    • 1
  • Alan Polato Francelin
    • 1
  • Sylvio Savoie
    • 2
  • Robert Schulz
    • 2
  • Christian Moreau
    • 1
  1. 1.Mechanical, Industrial and Aerospace Engineering DepartmentConcordia UniversityMontrealCanada
  2. 2.Institut de Recherche d’Hydro QuébecVarennesCanada

Personalised recommendations