Modeling of Suspension Plasma Spraying Process Including Arc Movement Inside the Torch

  • E. DalirEmail author
  • A. Dolatabadi
  • J. Mostaghimi
Peer Reviewed


Suspension plasma spraying process, a relatively new deposition technique in thermal spray coating, has been increasingly applied to deposit high-quality thermal barrier coatings using submicron particles. An accurate simulation of the process includes the development of a realistic model of the plasma both within and outside the torch. In this work, a three-dimensional time-dependent model has been developed to simulate the magnetohydrodynamic fields inside a DC plasma torch including arc fluctuations. The Reynolds stress model is used to simulate the time-dependent turbulent plasma flow. To investigate the effects of plasma arc fluctuation on the trajectory, temperature, and velocity of suspension droplets injected into the plasma jet, a two-way coupled Eulerian–Lagrangian method is employed. Submicron yttria-stabilized zirconia particles, suspended in ethanol, are modeled as multicomponent droplets. The Kelvin–Helmholtz Rayleigh–Taylor breakup model is used to simulate the droplet breakup. Particles are also tracked after the completion of suspension breakup and evaporation to obtain the in-flight particle conditions including the trajectory, size, velocity, and temperature. The arc attachment spots showed a good agreement with the experimental images. It was also shown that the properties of the particles are significantly affected by plasma arc fluctuations.


3D unsteady plasma flow arc attachment electromagnetic fields suspension plasma spraying yttria-stabilized zirconia 



Financial support from Green-SEAM, an NSERC Strategic Network Grant, is gratefully acknowledged.


  1. 1.
    P. Fauchais, J. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals, Springer, New York, 2014CrossRefGoogle Scholar
  2. 2.
    A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J. Oberste Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, B. Jodoin, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440CrossRefGoogle Scholar
  3. 3.
    A. Vardelle, C. Moreau, N.J. Themelis, and C. Chazelas, A Perspective on Plasma Spray Technology, Plasma Chem. Plasma Process., 2015, 35(3), p 491-509CrossRefGoogle Scholar
  4. 4.
    J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26(4), p 371-391CrossRefGoogle Scholar
  5. 5.
    J. Berghaus, B. Marple, and C. Moreau, Suspension Plasma Spraying of Nanostructured WC-12Co Coatings, J. Therm. Spray Technol., 2006, 15(4), p 676-681CrossRefGoogle Scholar
  6. 6.
    P. Fauchais, R. Etchart-Salas, C. Delbos, M. Tognonvi, V. Rat, J.F. Coudert, and T. Chartier, Suspension and Solution Plasma Spraying of Finely Structured Layers: Potential Application to SOFCs, J. Phys. D Appl. Phys., 2007, 40(8), p 2394-2406CrossRefGoogle Scholar
  7. 7.
    J.F. Bisson, B. Gauthier, and C. Moreau, Effect of Plasma Fluctuations on In-Flight Particle Parameters, J. Therm. Spray Technol., 2003, 12(1), p 38-43CrossRefGoogle Scholar
  8. 8.
    J.F. Bisson and C. Moreau, Effect of Direct-Current Plasma Fluctuations on In-Flight Particle Parameters: Part II, J. Therm. Spray Technol., 2003, 12(2), p 258-264CrossRefGoogle Scholar
  9. 9.
    M. Jadidi, S. Moghtadernejad, and A. Dolatabadi, Numerical Modeling of Suspension HVOF Spray, J. Therm. Spray Technol., 2016, 25(3), p 451-464CrossRefGoogle Scholar
  10. 10.
    F. Jabbari, M. Jadidi, R. Wuthrich, and A. Dolatabadi, A Numerical Study of Suspension Injection in Plasma-Spraying Process, J. Therm. Spray Technol., 2014, 23, p 3-13CrossRefGoogle Scholar
  11. 11.
    M. Jadidi, M. Mousavi, S. Moghtadernejad, and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24, p 11-23Google Scholar
  12. 12.
    Y.P. Wan, V. Gupta, Q. Deng, S. Sampath, V. Prasad, R. Williamson, and J.R. Fincke, Modeling and Visualization of Plasma Spraying of Functionally Graded Materials and Its Application to the Optimization of Spray Conditions, J. Therm. Spray Technol., 2000, 10(2), p 382-389CrossRefGoogle Scholar
  13. 13.
    D. Khelfi, A. Abdellah El-hadj, and N. Ait-Messaoudène, Modeling of a 3D Plasma Thermal Spraying and the Effect of the Particle Injection Angle, Revue des Energies Renouvelables CISM’08 Oum El Bouaghi, 2008, 8, p 205-216Google Scholar
  14. 14.
    R.L. Williamson, J.R. Fincke, and C.H. Chang, A Computational Examination of the Sources of Statistical Variance in Particle Parameters During Thermal Plasma Spraying, Plasma Chem. Plasma Process., 2000, 20(3), p 299-324CrossRefGoogle Scholar
  15. 15.
    K. Cheng, X. Chen, and W. Pan, Comparison of Laminar and Turbulent Thermal Plasma Jet Characteristics—A Modeling Study, Plasma Chem. Plasma Process., 2006, 26(3), p 211-235CrossRefGoogle Scholar
  16. 16.
    J.R. Fincke, D.M. Crawford, S.C. Snyder, W.D. Swank, D.C. Haggard, and R.L. Williamson, Entrainment in High-Velocity, High-Temperature Plasma Jets. Part I: Experimental Results, Int. J. Heat Mass Transf., 2003, 46, p 4201-4213CrossRefGoogle Scholar
  17. 17.
    K. Pourang, C. Moreau, and A. Dolatabadi, Effect of Substrate and Its Shape on IN-FLIGHT Particle Characteristics in Suspension Plasma Spraying, J. Therm. Spray Technol., 2016, 25, p 44-54CrossRefGoogle Scholar
  18. 18.
    A. Farrokhpanah, T.W. Coyle, and J. Mostaghimi, Numerical Study of Suspension Plasma Spraying, J. Therm. Spray Technol., 2017, 26(1-2), p 12-36CrossRefGoogle Scholar
  19. 19.
    P. Eichert, M. Imbert, and C. Coddet, Numerical Study of an ArH2 Gas Mixture Flowing Inside and Outside a dc Plasma Torch, J. Therm. Spray Technol., 1998, 7(4), p 505-512CrossRefGoogle Scholar
  20. 20.
    E. Meillot, S. Vincent, C. Le Bot, F. Sarret, J.P. Caltagirone, and L. Bianchi, Numerical Simulation of Unsteady ArH2 Plasma Spray Impact on a Moving Substrate, Surf. Coat. Technol., 2015, 268(88), p 257-265CrossRefGoogle Scholar
  21. 21.
    C. Marchand, A. Vardelle, G. Mariaux, and P. Lefort, Modelling of the Plasma Spray Process with Liquid Feedstock Injection, Surf. Coat. Technol., 2008, 202(18), p 4458-4464CrossRefGoogle Scholar
  22. 22.
    E. Meillot, D. Guenadou, and C. Bourgeois, Three-Dimension and Transient D.C. Plasma Flow Modeling, Plasma Chem. Plasma Process., 2008, 28(1), p 69-84CrossRefGoogle Scholar
  23. 23.
    E. Dalir, C. Moreau, and A. Dolatabadi, Three-Dimensional Modeling of Suspension Plasma Spraying with Arc Voltage Fluctuations, J. Therm. Spray Technol., 2018, 27(8), p 1465-1490CrossRefGoogle Scholar
  24. 24.
    Z. Duan and J. Heberlein, Arc Instabilities in a Plasma Spray Torch, J. Therm. Spray Technol., 2002, 11(1), p 44-51CrossRefGoogle Scholar
  25. 25.
    J.F. Coudert, M.P. Planche, and P. Fauchais, Characterization of dc Plasma Torch Voltage Fluctuations, Plasma Chem. Plasma Process., 1995, 16(1), p S211-S227CrossRefGoogle Scholar
  26. 26.
    R. Ramasamy and V. Selvarajan, Current–Voltage Characteristics of a Non-transferred Plasma Spray Torch, Eur. Phys. J. D, 2000, 8(1), p 125-129CrossRefGoogle Scholar
  27. 27.
    A. Boussagol, G. Mariaux, E. Legros, A. Vardelle, and P. Nulen, 3-D modeling of a DC plasma jet using different commercial CFD codes, Proceedings of 14th International Symposium on Plasma Chemistry, 2000Google Scholar
  28. 28.
    R. Huang, H. Fukanuma, Y. Uesugi, and Y. Tanaka, Simulation of Arc Root Fluctuation in a DC Non-transferred Plasma Torch with Three Dimensional Modeling, J. Therm. Spray Technol., 2012, 21, p 636-643CrossRefGoogle Scholar
  29. 29.
    E. Moreau, C. Chazelas, G. Mariaux, and A. Vardelle, Modeling the Restrike Mode Operation of a DC Plasma Spray Torch, J. Therm. Spray Technol., 2006, 15(4), p 524-530CrossRefGoogle Scholar
  30. 30.
    C. Felipini and M. Pimenta, Some Numerical Simulation Results of Swirling Flow in d.c. Plasma Torch, J. Phys. Conf. Ser., 2015, 591, p 012038CrossRefGoogle Scholar
  31. 31.
    R. Westhoff and J. Szekely, A Model of Fluid, Heat Flow, and Electromagnetic Phenomena in a Non-transferred Arc Plasma Torch, J. Appl. Phys., 1991, 70(7), p 3455-3466CrossRefGoogle Scholar
  32. 32.
    S. Paik, P.C. Huang, J. Hebelein, and E. Pfender, Determination of the Arc-Root Position in a DC Plasma Torch, Plasma Chem. Plasma Process., 1993, 13(3), p 379-397CrossRefGoogle Scholar
  33. 33.
    D.A. Scott, P. Kovitya, and G.N. Haddad, Temperatures in the Plume of a dc Plasma Torch, J. Appl. Phys., 1989, 66(11), p 5232-5239CrossRefGoogle Scholar
  34. 34.
    J.P. Trelles and J. Heberlein, Simulation Results of Arc Behavior in Different Plasma Spray Torches, J. Therm. Spray Technol., 2006, 15(4), p 563-569CrossRefGoogle Scholar
  35. 35.
    J.P. Trelles, E. Pfender, and J. Heberlein, Multiscale Finite Element Modeling of Arc Dynamics in a DC Plasma Torch, Plasma Chem. Plasma Process., 2006, 26(6), p 557-575CrossRefGoogle Scholar
  36. 36.
    J.P. Trelles, E. Pfender, and J. Heberlein, Modelling of the Arc Reattachment Process in Plasma Torches, J. Phys. D Appl. Phys., 2007, 40(18), p 5635-5648CrossRefGoogle Scholar
  37. 37.
    J.P. Trelles, C. Chazelas, A. Vardelle, and J. Heberlein, Arc Plasma Torch Modeling, J. Therm. Spray Technol., 2009, 18, p 728CrossRefGoogle Scholar
  38. 38.
    M. Alaya, C. Chazelas, G. Mariaux, and A. Vardelle, Arc-Cathode Coupling in the Modeling of a Conventional DC Plasma Spray Torch, J. Therm. Spray Technol., 2015, 24(1-2), p 3-10Google Scholar
  39. 39.
    T. Amakawa, J. Jenista, J. Heberlein, and E. Pfender, Anode-Boundary-Layer Behaviour in a Transferred, High-Intensity Arc, J. Phys. D Appl. Phys., 1998, 31(20), p 2826CrossRefGoogle Scholar
  40. 40.
    J. Jenista, V. Heberlein, and E. Pfender, Numerical Model of the Anode Region of High-Current Electric Arcs, IEEE Trans. Plasma Sci., 1997, 25(5), p 883-890CrossRefGoogle Scholar
  41. 41.
    Model SG-100 Plasma Spray Gun Operator’s manual, Manual Part Number: 05001760, Praxair Surface Technology, 2004Google Scholar
  42. 42.
    C.W. Kang, H.W. Ng, and S.C.M. Yu, Comparative Study of Plasma Spray Flow Fields and Particle Behavior Near to Flat Inclined Substrates, Plasma Chem. Plasma Process., 2006, 26(2), p 149-175CrossRefGoogle Scholar
  43. 43.
    M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Applications, Springer, Berlin, 2013Google Scholar
  44. 44.
    ANSYS Inc., ANSYS FLUENT Theory Guide (USA, 2013), LinkGoogle Scholar
  45. 45.
    J.P. Trelles, J. Heberlein, and E. Pfender, Non-equilibrium Modelling of Arc Plasma Torches, J. Phys. D Appl. Phys., 2007, 40, p 5937-5952. CrossRefGoogle Scholar
  46. 46.
    S.A. Morsi and A.J. Alexander, An Investigation of Particle Trajectories in Two-Phase Flow Systems, J. Fluid Mech., 1972, 55(2), p 193-208CrossRefGoogle Scholar
  47. 47.
    E. Pfender, R. Spores, and W.L.T. Chen, A New Look at the Thermal and Gas Dynamic Characteristics of a Plasma Jet, Int. J. Mater. Prod. Technol., 1995, 10, p 548-565Google Scholar
  48. 48.
    H.-P. Li, E. Pfender, and X. Chen, Application of Steenbeck’s Minimum Principle for Three-Dimensional Modelling of DC Arc Plasma Torches, J. Phys. D Appl. Phys., 2003, 36(9), p 1084CrossRefGoogle Scholar
  49. 49.
    M.P. Collares and E. Pfender, Effect of Current Connection to the Anode Nozzle on Plasma Torch Efficiency, IEEE Trans. Plasma Sci., 1997, 25(5), p 864-871CrossRefGoogle Scholar
  50. 50.
    E. Ardakani, Numerical and Experimental Study of the Arc Fluctuations in a DC Plasma Torch, Ph.D. Thesis, University of Toronto, 2016Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Mechanical, Industrial and Aerospace EngineeringConcordia UniversityMontrealCanada

Personalised recommendations