Microstructural Characterization of NiCrFeSiBC Coating During Long-Term Isothermal Oxidation at 850 °C

  • Alexandra Banu
  • Maria MarcuEmail author
  • Oana Trusca
  • Alexandru Paraschiv
  • Elena Maria Anghel
  • Irina Atkinson
Peer Reviewed


This paper reports bond coating/substrate interface evolution during isothermal oxidation tests at 850 °C up to 500 h in air of the Ni17Cr4Fe3.5B4SiC coating deposited on a Ti3Al substrate by high-velocity oxy-fuel (HVOF) spraying. The microstructure of the Ni17Cr4Fe3.5B4SiC/Ti3Al system was analyzed by scanning electron microscopy (SEM), Raman spectroscopy and x-ray diffraction (XRD) after isothermal oxidation. The isothermal oxidation behavior of the Ni17Cr4Fe3.5B4SiC/Ti3Al system was dominated by significant changes of interfaces. Intense interdiffusion processes took place between the Ni17Cr4Fe3.5B4SiC coating and substrate with an important change in the chemical composition of interdiffusion zones, leading to internal oxidation. Also, the oxide scale that developed on Ni17Cr4Fe3.5B4SiC coating surface was predominantly composed of Cr2O3, CrBO3, Ni3(BO3)2 and NiFe2−xCrxO4 spinel. After long exposure of the Ni17Cr4Fe3.5B4SiC/Ti3Al at 850 °C, the coating thickness decreased from 132 to 96 μm as a consequence of internal oxidation processes and the oxide scale spallation. The chemical mismatch between thermal expansion coefficients (CTE) of Ni17Cr4Fe3.5B4SiC coating and Ti3Al substrate, as well as the intense interdiffusion processes, affected the adherence between coating and titanium substrate.


bond coat HVOF coating isothermal oxidation thermal barrier coatings Raman spectroscopy 



This work was performed within the framework of the “Electrochemical preparation and characterization of active materials with predetermined features” research project of the Institute of Physical Chemistry of the Romanian Academy. XRD and Raman measurements were taken using the research infrastructure acquired under POS-CCE O 2.2.1 project INFRANANOCHEM-No 19/2009 of the EU (ERDF) and Romanian Government.


  1. 1.
    C. Leyens, U. Schulz, B.A. Pint, and I.W. Wright, Influence of EB-PVD TBC Microstructure on Thermal Barrier Coating System Performance Under Cyclic Oxidation Conditions, Surf. Coat. Technol., 1999, 120, p 68-76CrossRefGoogle Scholar
  2. 2.
    A. Banu, M. Marcu, S. Petrescu, N. Ionescu, and A. Paraschiv, Effect of Niobium Alloying Level on Oxidation Behavior of Titanium Aluminides at 850 °C, Int. J. Miner. Metall. Mater., 2016, 23, p 1452-1456CrossRefGoogle Scholar
  3. 3.
    E.M. Anghel, M. Marcu, A. Banu, I. Atkinson, A. Paraschiv, and S. Petrescu, Microstructure and Oxidation Resistance of a NiCrAlY/Al2O3-Sprayed Coating on Ti-19Al-10Nb-V Alloy, Ceram. Int., 2016, 42, p 12148-12155CrossRefGoogle Scholar
  4. 4.
    S. Saedi, K.T. Voisev, and D.C. McCartney, The Effect of Heat Treatment on the Oxidation Behavior of HVOF and VPS CoNiCrAlY Coatings, J. Therm. Spray Technol., 2009, 18(2), p 209-214CrossRefGoogle Scholar
  5. 5.
    P. Planques, V. Vidal, P. Lours, V. Proton, F. Crabos, J. Huez, and B. Viquier, Mechanical and Thermo-physical Properties of Plasma-Sprayed Thermal Barrier Coatings: A Literature Survey, Oxid. Met., 2017, 88(1-2), p 133-143CrossRefGoogle Scholar
  6. 6.
    R. Rajendran, V.S. Raja, R. Sivakumar, and R.S. Srinivasa, Reduction of Interconnected Porosity in Zirconia-Based Thermal Barrier Coating, Surf. Coat. Technol., 1995, 73(3), p 198-200CrossRefGoogle Scholar
  7. 7.
    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Studies on the Properties of High-Velocity Oxy-Fuel Thermal Spray Coatings for Higher Temperature Applications, Mater. Sci., 2005, 41, p 805-823CrossRefGoogle Scholar
  8. 8.
    H.W. Grunling and R. Bauer, The Role of Silicon in Corrosion-Resistant High Temperature Coatings, Thin Solid Films, 1982, 95, p 3-20CrossRefGoogle Scholar
  9. 9.
    T. Sundararajan, S. Kuroda, and F. Abe, Effect of Thermal Spray on the Microstructure and Adhesive Strength of High-Velocity Oxy-Fuel-Sprayed Ni-Cr Coatings on 9Cr-1Mo Steel, Metall. Mater. Trans. A, 2004, 35A, p 3187-3199CrossRefGoogle Scholar
  10. 10.
    M. Guilemany, N. Espallargas, P.H. Suegama, A.V. Benedetti, and J. Fernandez, High-Velocity Oxyfuel Cr3C2-NiCr Replacing Hard Chromium Coatings, J. Therm. Spray Technol., 2005, 14, p 335-342CrossRefGoogle Scholar
  11. 11.
    G. Bolelli, B. Bonferroni, J. Laurila, L. Lusvarghi, A. Milanti, K. Niemi, and P. Vuoristo, Micromechanical Properties and Sliding Wear Behavior of HVOF-Sprayed Fe-Based Alloy Coatings, Wear, 2012, 276, p 29-47CrossRefGoogle Scholar
  12. 12.
    G. Bolelli, L. Lusvarghi, and R. Giovanardi, A Comparison Between the Corrosion Resistances of Some HVOF-Sprayed Metal Alloy Coatings, Surf. Coat. Technol., 2008, 202, p 4793-4809CrossRefGoogle Scholar
  13. 13.
    M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and N. Krishnamurthy, Evaluation of Thermocycling Oxidation Behavior of HVOF-Sprayed NiCrFeSiB Coatings on Boiler Tube Steels, J. Therm. Spray Technol., 2011, 20(5), p 992-1000CrossRefGoogle Scholar
  14. 14.
    M.P. Planche, H. Liao, B. Normand, and C. Coddet, Relationships Between NiCrBSi Particle Characteristics and Corresponding Coating Properties Using Different Thermal Spraying Processes, Surf. Coat. Technol., 2005, 200, p 2465-2473CrossRefGoogle Scholar
  15. 15.
    V.S. Sathyaseelan, P. Chandramohan, and S. Velmurugan, High Temperature Dissolution of Chromium Substituted Nickel Ferrite in Nitrilotriacetic Acid Medium, J. Nucl. Mater., 2006, 481, p 53-61CrossRefGoogle Scholar
  16. 16.
    B.D. Hosterman, Raman Spectroscopic Study of Solid Solution Spinel Oxides. University of Nevada, Las Vegas, UNLV Theses, Dissertations, Professional Papers, and Capstones (2011), p. 1087Google Scholar
  17. 17.
    A.G. Tyurin, Thermodynamics of the Chemical and Electrochemical Resistance of Iron-Chromium Alloys, Prot. Met, 1999, 35, p 215-220Google Scholar
  18. 18.
    R.V. Pisarev, M.A. Prosnikov, VYu Davydov, A.N. Smirnov, E.M. Roginskii, K.N. Boldyrev, A.D. Molchanova, M.N. Popova, M.B. Smirnov, and VYu Kazimirov, Lattice Dynamics and a Magnetostructural Phase Transition of the Nickel Orthoborate Ni3(BO3)2, Phys. Rev. B, 2015, 93, p 1-29Google Scholar
  19. 19.
    J.S. Berkes and W.B. White, Phase Relations in the System Li2O.B2O3-B2O3-NiO, J. Am. Ceram. Soc., 1969, 52, p 481-484CrossRefGoogle Scholar
  20. 20.
    O. Monnereau, L. Tortet, C.E.A. Grigorescu, D. Savastru, C.R. Iordanescu, F. Guinneton, R. Notonier, A. Tonetto, T. Zhang, I.N. Mihailescu, D. Stanoi, and H.J. Trodahl, Chromium Oxides Mixtures in PLD Films Investigated by Raman Spectroscopy, J. Optoelectron. Adv. Mater., 2010, 12, p 1752-1758Google Scholar
  21. 21.
    M. Jha, S.D. Kshirsagar, M.G. Krishna, and A.K. Ganguli, Growth and Optical Properties of Chromium Borate Thin Films, Solid State Sci., 2011, 13, p 1334-1342CrossRefGoogle Scholar
  22. 22.
    M.L. Emiliani, Characterization and Oxidation Resistance of Hot-Pressed Chromium Diboride, Mater. Sci. Eng., A, 1993, 172, p 111-124CrossRefGoogle Scholar
  23. 23.
    Y.Z. Liu, X.B. Hu, S.J. Zheng, Y.I. Zhu, H. Wei, and X.I. Ma, Microstructural Evolution of the Interface Between NiCrAlY Coating and Superalloy During Isothermal Oxidation, Mater. Des., 2015, 80, p 63-69CrossRefGoogle Scholar
  24. 24.
    K. Raju, J.K. Sonber, T.S.R.Ch. Murthy, K. Sairam, S. Majumdar, V. Kain, and G.V.S. Nageswar Rao, Densification, Microstructural Evolution, Mechanical Properties and Oxidation Study of CrB2 + EuB6 Composite, JMEPEG, 2018, 27, p 2457-2468CrossRefGoogle Scholar
  25. 25.
    M. Marciuš, M. Ristic, M. Ivanda, and S. Music, Formation and Microstructure of Nickel Oxide Films, J. Alloy Compd., 2012, 541, p 238-243CrossRefGoogle Scholar
  26. 26.
    M.K. Schmitt, O. Janka, O. Niehaus, T. Dresselhaus, R. Pöttgen, F. Pielnhofer, R. Weihrich, M. Krzhizhanovskaya, S. Filatov, R. Bubnova, L. Bayarjargal, B. Winkler, R. Glaum, and H. Huppertz, Synthesis and Characterization of the High-Pressure Nickel Borate γ-NiB4O7, Inorg. Chem., 2017, 56, p 4217-4228CrossRefGoogle Scholar
  27. 27.
    S. Petrescu, M. Malki, M. Constantinescu, E.M. Anghel, I. Atkinson, R. State, and M. Zaharescu, Vitreous and Glass-Ceramics Materials in the SiO2-Al2O3-MeO-M2O Type System, J. Optoelectron. Adv. Mater., 2012, 14, p 603-612Google Scholar
  28. 28.
    S.R.J. Saunders and J.R. Nicholls, Coating and Surface Treatments for High Temperature Oxidation Resistance, Mater. Sci. Technol., 1989, 5, p 780-798CrossRefGoogle Scholar
  29. 29.
    M.W.A. Rashid, M. Gakim, Z.M. Rosli, and M.A. Azam, Formation of Cr23C6 During the Sensitization of AISI, 304 Stainless Steel and its Effect to Pitting Corrosion, Int. J. Electrochem. Sci., 2012, 7, p 9465-9477Google Scholar
  30. 30.
    N. Srisuwan, K. Eidhed, N. Kreatsereekul, T. Yingsamphanchareon, and A. Kaewvilai, The Study of Heat Treatment Effects on Chromium Carbide Precipitation of 35Cr-45Ni-Nb Alloy for Repairing Furnace Tubes, Metals, 2016, 6, p 2-14CrossRefGoogle Scholar
  31. 31.
    ASM Ready Reference, Thermal Properties of Metals, ed. by Fran Cverna (Materials Park, 2002)Google Scholar
  32. 32.
    K. Kingma and R.J. Hemley, Raman Spectroscopic Study of Microcrystalline Silica, Am. Mineral., 1994, 79, p 269-273Google Scholar
  33. 33.
    O. Frank, M. Zukalova, B. Laskova, J. Kurti, J. Koltai, and L. Kavan, Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18), Phys. Chem. Chem. Phys., 2012, 14, p 14567-14572CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Alexandra Banu
    • 1
  • Maria Marcu
    • 2
    Email author
  • Oana Trusca
    • 3
  • Alexandru Paraschiv
    • 4
  • Elena Maria Anghel
    • 2
  • Irina Atkinson
    • 2
  1. 1.Politehnica University of BucharestBucharestRomania
  2. 2.Institute of Physical Chemistry “Ilie Murgulescu”BucharestRomania
  3. 3.Plasma Jet SLLMagurele, BucharestRomania
  4. 4.COMOTI – Romanian Research Development Institute for Gas TurbinesBucharestRomania

Personalised recommendations