Journal of Thermal Spray Technology

, Volume 28, Issue 5, pp 1017–1024 | Cite as

Anisotropic Elasticity of APS and HVOF CoNiCrAlY Coatings Studied by Resonant Ultrasound Spectroscopy with Laser Doppler Interferometry

  • Kanta AdachiEmail author
  • Hiroyuki Waki
Peer Reviewed


The splat-based layered structure of thermal spray coatings leads to elastic anisotropy; however, elucidating the anisotropic elastic properties of such coatings is a challenging subject because of the limited sample size and microstructural factors such as high defect level. The objective of this study is to investigate the anisotropic elasticity of the as-sprayed and heat-treated CoNiCrAlY coatings prepared by atmospheric plasma spraying (APS) and high-velocity oxygen fuel (HVOF) spraying. For this purpose, we measure all five elastic constants accurately using resonant ultrasound spectroscopy with laser Doppler interferometry. This approach realizes the correct mode identification of the measured resonance frequencies, even for coatings with high internal friction by comparing the measured and calculated displacement distributions, providing a precise determination of the elastic constants with inverse calculation. We determined that an oriented array of defects causes a significantly low Young’s modulus along the spraying direction in both the as-sprayed coatings. Our measurements on the heat-treated coatings revealed that thermal treatment makes the APS coating stiffer than the HVOF coating, whereas the stiffness anisotropy of the APS coating remains stronger compared to the HVOF coating, even after heating. This phenomenon is consistently explained by focusing on the oxides in the coatings.


anisotropic elasticity MCrAlY mechanical properties resonant ultrasound spectroscopy thermal spray coating Young’s modulus 



We wish to thank Dr. T. Kuwashima (Iwate Industrial Research Institute) for his valuable contribution to preparation of the CoNiCrAlY coatings.


  1. 1.
    H. Waki, T. Kitamura, and A. Kobayashi, Effect of Thermal Treatment on High-Temperature Mechanical Properties Enhancement in LPPS, HVOF, and APS CoNiCrAlY Coatings, J. Therm. Spray Technol., 2009, 18(4), p 500-509CrossRefGoogle Scholar
  2. 2.
    S. Saeidi, K.T. Voisey, and D.G. McCartney, Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings, J. Therm. Spray Technol., 2011, 20(6), p 1231-1243CrossRefGoogle Scholar
  3. 3.
    H. Seiner, J. Cizek, P. Sedlak, R. Huang, J. Cupera, I. Dlouhy, and M. Landa, Elastic Moduli and Elastic Anisotropy of Cold Sprayed Metallic Coatings, Surf. Coat. Technol., 2016, 291, p 342-347CrossRefGoogle Scholar
  4. 4.
    L. Zhao, M. Parco, and E. Lugscheider, High Velocity Oxy-Fuel Thermal Spraying of a NiCoCrAlY Alloy, Surf. Coat. Technol., 2004, 179, p 272-278CrossRefGoogle Scholar
  5. 5.
    P. Poza and P.S. Grant, Microstructure Evolution of Vacuum Plasma Sprayed CoNiCrAlY Coatings After Heat Treatment and Isothermal Oxidation, Surf. Coat. Technol., 2006, 201, p 2887-2896CrossRefGoogle Scholar
  6. 6.
    N. Margadant, J. Neuenschwander, S. Stauss, H. Kaps, A. Kulkarni, J. Matejicek, and G. Rossler, Impact of Probing Volume from Different Mechanical Measurement Methods on Elastic Properties of Thermally Sprayed Ni-Based Coatings on a Mesoscopic Scale, Surf. Coat. Technol., 2006, 200, p 2805-2820CrossRefGoogle Scholar
  7. 7.
    Y. Tan, A. Shyam, W.B. Choi, E. Lara-Curzio, and S. Sampath, Anisotropic Elastic Properties of Thermal Spray Coatings Determined via Resonant Ultrasound Spectroscopy, Acta Mater., 2010, 58, p 5305-5315CrossRefGoogle Scholar
  8. 8.
    P. Sedmak, H. Seiner, P. Sedlak, M. Landa, R. Musalek, and J. Matejicek, Application of Resonant Ultrasound Spectroscopy to Determine Elastic Constants of Plasma-Sprayed Coatings with High Internal Friction, Surf. Coat. Technol., 2013, 232, p 747-757CrossRefGoogle Scholar
  9. 9.
    T. Lauwagie, K. Lambrinou, S. Patsias, W. Heylen, and J. Vleugels, Resonant-Based Identification of the Elastic Properties of Layered Materials: Application to Air-Plasma Sprayed Thermal Barrier Coatings, NDT and E Int., 2008, 41, p 88-97CrossRefGoogle Scholar
  10. 10.
    W.B. Choi, L. Prchlik, S. Sampath, and A. Gouldstone, Indentation of Metallic and Cermet Thermal Spray Coatings, J. Therm. Spray Technol., 2009, 18(1), p 58-64CrossRefGoogle Scholar
  11. 11.
    G. Di Girolamo, M. Alfano, L. Pagnotta, A. Taurino, J. Zekonyte, and R.J.K. Wood, On the Early Stage Isothermal Oxidation of APS CoNiCrAlY Coatings, J. Mater. Eng. Perform., 2012, 21(9), p 1989-1997CrossRefGoogle Scholar
  12. 12.
    H. Waki, A. Oikawa, M. Kato, S. Takahashi, Y. Kojima, and F. Ono, Evaluation of the Accuracy of Young’s Moduli of Thermal Barrier Coatings Determined on the Basis of Composite Beam Theory, J. Therm. Spray Technol., 2014, 23(8), p 1291-1301CrossRefGoogle Scholar
  13. 13.
    H. Waki, K. Takizawa, M. Kato, and S. Takahashi, Accuracy of Young’s Modulus of Thermal Barrier Coating Layer Determined by Bending Resonance of a Multilayered Specimen, J. Therm. Spray Technol., 2016, 25(4), p 684-693CrossRefGoogle Scholar
  14. 14.
    I. Ohno, Free Vibration of a Rectangular Parallelepiped Crystal and its Application to Determination of Elastic Constants of Orthorhombic Crystals, J. Phys. Earth, 1976, 24, p 355-379CrossRefGoogle Scholar
  15. 15.
    A. Migliori, J.L. Sarrao, W.M. Visscher, T.M. Bell, M. Lei, Z. Fisk, and R.G. Leisure, Resonant Ultrasound Spectroscopic Techniques for Measurement of the Elastic Moduli of Solids, Phys. B, 1993, 183, p 1-24CrossRefGoogle Scholar
  16. 16.
    J. Maynard, Resonant Ultrasound Spectroscopy, Phys. Today, 1996, 49(1), p 26-31CrossRefGoogle Scholar
  17. 17.
    H. Ogi, K. Sato, T. Asada, and M. Hirao, Complete Mode Identification for Resonance Ultrasound Spectroscopy, J. Acoust. Soc. Am., 2002, 112(6), p 2553-2557CrossRefGoogle Scholar
  18. 18.
    H. Ogi, Y. Kawasaki, M. Hirao, and H. Ledbetter, Acoustic Spectroscopy of Lithium Niobate: Elastic and Piezoelectric coefficients, J. Appl. Phys., 2002, 92, p 2451-2456CrossRefGoogle Scholar
  19. 19.
    H. Ogi, N. Nakamura, K. Sato, M. Hirao, and S. Uda, Elastic, Anelastic, and Piezoelectric Coefficients of Langasite: Resonance Ultrasound Spectroscopy with Laser-Doppler Interferometry, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2003, 50, p 553-560CrossRefGoogle Scholar
  20. 20.
    H. Ogi, M. Fukunaga, M. Hirao, and H. Ledbetter, Elastic Constants, Internal Friction, and Piezoelectric Coefficient of α-TeO2, Phys. Rev. B, 2004, 69, p 024104CrossRefGoogle Scholar
  21. 21.
    S. Saeidi, K.T. Voisey, and D.G. McCartney, The Effect of Heat Treatment on the Oxidation Behavior of HVOF and VPS CoNiCrAlY Coatings, J. Therm. Spray Technol., 2009, 18(2), p 209-216CrossRefGoogle Scholar
  22. 22.
    Y. Han, H. Chen, D. Gao, G. Yang, B. Liu, Y. Chu, J. Fan, and Y. Gao, Microstructual Evolution of NiCoCrAlHfYSi and NiCoCrAlTaY Coatings Deposited by AC-HVAF and APS, J. Therm. Spray Technol., 2017, 26, p 1758-1775CrossRefGoogle Scholar
  23. 23.
    P. Richer, M. Yandouzi, L. Beauvais, and B. Jodoin, Oxidation Behaviour of CoNiCrAlY Bond Coats Produced by Plasma, HVOF and Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2010, 204, p 3962-3974CrossRefGoogle Scholar
  24. 24.
    H.H. Demarest, Jr., Cube-Resonance Method to Determine the Elastic Constants of Solids, J. Acoust. Soc. Am., 1971, 49, p 768-775CrossRefGoogle Scholar
  25. 25.
    E. Mochizuki, Application of Croup Theory to Free Oscillations of an Anisotropic Rectangular Parallelepiped, J. Phys. Earth, 1987, 35, p 159-170CrossRefGoogle Scholar
  26. 26.
    W. Brandl, D. Toma, J. Kruger, H.J. Grabke, and G. Matthaus, The Oxidation Behavior of HVOF Thermal-Sprayed MCrAlY Coatings, Surf. Coat. Technol., 1997, 94–95, p 21-26CrossRefGoogle Scholar
  27. 27.
    S. Guo and Y. Kagawa, Young’s Moduli of Zirconia Top-Coat and Thermally Grown Oxide in a Plasma-Sprayed Thermal Barrier Coating System, Scr. Mater., 2004, 50, p 1401-1406CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Systems Innovation EngineeringIwate UniversityMoriokaJapan

Personalised recommendations