Journal of Thermal Spray Technology

, Volume 28, Issue 4, pp 769–779 | Cite as

Strengthened Peening Effect on Metallurgical Bonding Formation in Cold Spray Additive Manufacturing

  • Yingchun Xie
  • Chaoyue ChenEmail author
  • Marie-Pierre Planche
  • Sihao Deng
  • Renzhong Huang
  • Zhongming Ren
  • Hanlin Liao
Peer Reviewed


Cold spraying is a solid-state coating process and promising technique for additive manufacturing. However, questions raise about the bonding mechanism between the particles forming the coating. In this study, the strengthened peening effect is proposed as the determining factor for the formation of metallurgical bonding in cold spray additive manufacturing. Ni coatings and single splats were produced on Al substrates with different propelling gas pressures. Contrary to common understanding, no metallurgical bonding was observed in single-particle impact, even at the pressure of 3.7 MPa. However, the metallurgical bonding was observed at the full coating deposition through the existence of diffusion after heat treatment. Thus, the strengthened peening effect of subsequent particles with successive impact energy might be the determining factor for the formation of metallurgical bonding. Actually, strengthened peening effect significantly improved the coating quality through enhanced metallurgical bonding, which was proved by the increasing adhesion strength and decreasing porosity.


additive manufacturing cold spraying diffusion layer peening effect propelling gas pressure 



The authors would like to acknowledge the supports by GDAS’ Project of Science and Technology Development (Grants No. 2018GDASCX-0945), Natural Science Foundation of Guangdong Province (Grants No. 2018A0303130075), International Cooperation Project (Grants No. 201807010013) and High-level Leading Talent Introduction Program of GDAS (Grants No. 2016GDASRC-0204). As one of the authors, Chaoyue CHEN would like to acknowledge the supports by Joint Funds of the National Natural Science Foundation of China (Nos. U1560202 and 51690162, 51604171), the Shanghai Municipal Science and Technology Commission Grant (No. 17JC1400602), and the National Science and Technology Major Project “Aeroengine and Gas Turbine” (2017-VII-0008-0102).


  1. 1.
    I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies, Springer, Berlin, 2010CrossRefGoogle Scholar
  2. 2.
    T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Additive Manufacturing of Metallic Components: Process, Structure and Properties, Prog. Mater Sci., 2018, 92(Supplement C), p 112-224CrossRefGoogle Scholar
  3. 3.
    X. Yan, S. Yin, C. Chen, C. Huang, R. Bolot, R. Lupoi, M. Kuang, W. Ma, C. Coddet, H. Liao, and M. Liu, Effect of Heat Treatment on the Phase Transformation and Mechanical Properties of Ti6Al4V Fabricated by Selective Laser Melting, J. Alloys Compd., 2018, 764, p 1056-1071CrossRefGoogle Scholar
  4. 4.
    A. Yuksel and M. Cullinan, Modeling of Nanoparticle Agglomeration and Powder Bed Formation in Microscale Selective Laser Sintering Systems, Addit. Manuf., 2016, 12, p 204-215CrossRefGoogle Scholar
  5. 5.
    E. Tiferet, O. Rivin, M. Ganor, H. Ettedgui, O. Ozeri, E.N. Caspi, and O. Yeheskel, Structural Investigation of Selective Laser Melting and Electron Beam Melting of Ti-6Al-4V Using Neutron Diffraction, Addit. Manuf., 2016, 10, p 43-46CrossRefGoogle Scholar
  6. 6.
    H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394CrossRefGoogle Scholar
  7. 7.
    S. Yin, X. Wang, X. Suo, H. Liao, Z. Guo, W. Li, and C. Coddet, Deposition Behavior of Thermally Softened Copper Particles in Cold Spraying, Acta Mater., 2013, 61(14), p 5105-5118CrossRefGoogle Scholar
  8. 8.
    S. Yin, M. Meyer, W. Li, H. Liao, and R. Lupoi, Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review, J. Therm. Spray Technol., 2016, 25(5), p 874-896CrossRefGoogle Scholar
  9. 9.
    M. Grujicic, J. Saylor, D. Beasley, W. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3), p 211-227CrossRefGoogle Scholar
  10. 10.
    C. Chen, Y. Xie, S. Yin, M.-P. Planche, S. Deng, R. Lupoi, and H. Liao, Evaluation of the Interfacial Bonding Between Particles and Substrate in Angular Cold Spray, Mater. Lett., 2016, 173, p 76-79CrossRefGoogle Scholar
  11. 11.
    C. Huang, W. Li, Y. Feng, Y. Xie, M.-P. Planche, H. Liao, and G. Montavon, Microstructural Evolution and Mechanical Properties Enhancement of a Cold-Sprayed Cu Zn Alloy Coating with Friction Stir Processing, Mater. Charact., 2017, 125, p 76-82CrossRefGoogle Scholar
  12. 12.
    C. Chen, X. Xie, Y. Xie, M.-P. Planche, S. Deng, G. Ji, E. Aubry, Z. Ren, and H. Liao, Cold Spraying of Thermally Softened Ni-Coated FeSiAl Composite Powder: Microstructure Characterization, Tribological Performance and Magnetic Property, Mater. Des., 2018, 160, p 270-283CrossRefGoogle Scholar
  13. 13.
    M. Yu, X.K. Suo, W.Y. Li, Y.Y. Wang, and H.L. Liao, Microstructure, Mechanical Property and Wear Performance of Cold Sprayed Al5056/SiCp Composite Coatings: Effect of Reinforcement Content, Appl. Surf. Sci., 2014, 289, p 188-196CrossRefGoogle Scholar
  14. 14.
    S. Yin, Y. Xie, J. Cizek, E.J. Ekoi, T. Hussain, D.P. Dowling, and R. Lupoi, Advanced Diamond-Reinforced Metal Matrix Composites via Cold Spray: Properties and Deposition Mechanism, Compos. B, 2017, 113, p 44-54CrossRefGoogle Scholar
  15. 15.
    J. Pattison, S. Celotto, R. Morgan, M. Bray, and W. O’Neill, Cold Gas Dynamic Manufacturing: A Non-thermal Approach to Freeform Fabrication, Int. J. Mach. Tool Manuf., 2007, 47(3-4), p 627-634CrossRefGoogle Scholar
  16. 16.
    S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li, and R. Lupoi, Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications, Addit. Manuf., 2018, 21, p 628-650CrossRefGoogle Scholar
  17. 17.
    C. Chen, S. Gojon, Y. Xie, Y. Shuo, C. Verdy, Z. Ren, H. Liao, and S. Deng, A Novel Spiral Trajectory for Damage Component Recovery with Cold Spray, Surf. Coat. Technol., 2016, 309, p 719-728CrossRefGoogle Scholar
  18. 18.
    M. Hassani-Gangaraj, D. Veysset, V.K. Champagne, K.A. Nelson, and C.A. Schuh, Adiabatic Shear Instability is not Necessary for Adhesion in Cold Spray, Acta Mater., 2018, 158, p 430-439CrossRefGoogle Scholar
  19. 19.
    Y. Ichikawa, R. Tokoro, M. Tanno, and K. Ogawa, Elucidation of Cold-Spray Deposition Mechanism by Auger Electron Spectroscopic Evaluation of Bonding Interface Oxide Film, Acta Mater., 2019, 164, p 39-49CrossRefGoogle Scholar
  20. 20.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394CrossRefGoogle Scholar
  21. 21.
    M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 368(1-2), p 222-230CrossRefGoogle Scholar
  22. 22.
    M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227CrossRefGoogle Scholar
  23. 23.
    Y. Xie, M.-P. Planche, R. Raoelison, H. Liao, X. Suo, and P. Hervé, Effect of Substrate Preheating on Adhesive Strength of SS 316L Cold Spray Coatings, J. Therm. Spray Technol., 2015, 25(1-2), p 123-130CrossRefGoogle Scholar
  24. 24.
    X. Wang, F. Feng, M.A. Klecka, M.D. Mordasky, J.K. Garofano, T. El-Wardany, A. Nardi, and V.K. Champagne, Characterization and Modeling of the Bonding Process in Cold Spray Additive Manufacturing, Addit. Manuf, 2015, 8, p 149-162CrossRefGoogle Scholar
  25. 25.
    G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868CrossRefGoogle Scholar
  26. 26.
    C. Chen, Y. Xie, R. Huang, S. Deng, Z. Ren, and H. Liao, On the Role of Oxide Film’s Cleaning Effect into the Metallurgical Bonding During Cold Spray, Mater. Lett., 2018, 210(1), p 199-202CrossRefGoogle Scholar
  27. 27.
    L. Ajdelsztajn, A. Zúñiga, B. Jodoin, and E.J. Lavernia, Cold Gas Dynamic Spraying of a High Temperature Al Alloy, Surf. Coat. Technol., 2006, 201(6), p 2109-2116CrossRefGoogle Scholar
  28. 28.
    T.S. Price, P.H. Shipway, D.G. McCartney, E. Calla, and D. Zhang, A Method for Characterizing the Degree of Inter-particle Bond Formation in Cold Sprayed Coatings, J. Therm. Spray Technol., 2007, 16(4), p 566-570CrossRefGoogle Scholar
  29. 29.
    G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.-J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57(19), p 5654-5666CrossRefGoogle Scholar
  30. 30.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688CrossRefGoogle Scholar
  31. 31.
    S. Yin, X.-F. Wang, W.Y. Li, and H.-E. Jie, Effect of Substrate Hardness on the Deformation Behavior of Subsequently Incident Particles in Cold Spraying, Appl. Surf. Sci., 2011, 257(17), p 7560-7565CrossRefGoogle Scholar
  32. 32.
    X.-T. Luo, C.-X. Li, F.-L. Shang, G.-J. Yang, Y.-Y. Wang, and C.-J. Li, High Velocity Impact Induced Microstructure Evolution During Deposition of Cold Spray Coatings: A Review, Surf. Coat. Technol., 2014, 254, p 11-20CrossRefGoogle Scholar
  33. 33.
    K. Kim, W. Li, and X. Guo, Detection of Oxygen at the Interface and Its Effect on Strain, Stress, and Temperature at the Interface Between Cold Sprayed Aluminum and Steel Substrate, Appl. Surf. Sci., 2015, 357, p 1720-1726CrossRefGoogle Scholar
  34. 34.
    W.-Y. Li, C. Zhang, X. Guo, C.-J. Li, H. Liao, and C. Coddet, Study on Impact Fusion at Particle Interfaces and Its Effect on Coating Microstructure in Cold Spraying, Appl. Surf. Sci., 2007, 254(2), p 517-526CrossRefGoogle Scholar
  35. 35.
    W.-Y. Li, C.-J. Li, and G.-J. Yang, Effect of Impact-Induced Melting on Interface Microstructure and Bonding of Cold-Sprayed Zinc Coating, Appl. Surf. Sci., 2010, 257(5), p 1516-1523CrossRefGoogle Scholar
  36. 36.
    C.J. Li and W.Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167(2-3), p 278-283CrossRefGoogle Scholar
  37. 37.
    M.A. Klecka, and A.T. Nardi, Self-peening feedstock materials for cold spray deposition, Google Patents, 2016.Google Scholar
  38. 38.
    A.T. Nardi, T.I. El-Wardany, W. Werkheiser, and M.A. Klecka, Method for enhancing bond strength through in situ peening, 2016.Google Scholar
  39. 39.
    X.-T. Luo, Y.-K. Wei, Y. Wang, and C.-J. Li, Microstructure and Mechanical Property of Ti and Ti6Al4V Prepared by an In Situ Shot Peening Assisted Cold Spraying, Mater. Des., 2015, 85, p 527-533CrossRefGoogle Scholar
  40. 40.
    Y.-K. Wei, X.-T. Luo, C.-X. Li, and C.-J. Li, Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating, J. Therm. Spray Technol., 2017, 26(1), p 173-183CrossRefGoogle Scholar
  41. 41.
    Y.-K. Wei, Y.-J. Li, Y. Zhang, X.-T. Luo, and C.-J. Li, Corrosion Resistant Nickel Coating with Strong Adhesion on AZ31B Magnesium Alloy Prepared by an In Situ Shot-Peening-Assisted Cold Spray, Corros. Sci., 2018, 138, p 105-115CrossRefGoogle Scholar
  42. 42.
    Y. Xie, M.-P. Planche, R. Raoelison, P. Hervé, X. Suo, P. He, and H. Liao, Investigation on the Influence of Particle Preheating Temperature on Bonding of Cold-Sprayed Nickel Coatings, Surf. Coat. Technol., 2017, 318, p 99-105CrossRefGoogle Scholar
  43. 43.
    G.R. Johnson, and W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 1983, pp. 541-547.Google Scholar
  44. 44.
    S. Yin, X.K. Suo, Y.C. Xie, W.Y. Li, R. Lupoi, and H.L. Liao, Effect of Substrate Temperature on Interfacial Bonding for Cold Spray of Ni onto Cu, J. Mater. Sci., 2015, 50(22), p 7448-7457CrossRefGoogle Scholar
  45. 45.
    S. Yin, X. Wang, W. Li, H. Liao, and H. Jie, Deformation Behavior of the Oxide Film on the Surface of Cold Sprayed Powder Particle, Appl. Surf. Sci., 2012, 259, p 294-300CrossRefGoogle Scholar
  46. 46.
    S. Yin, Y. Xie, X. Suo, H. Liao, and X. Wang, Interfacial Bonding Features of Ni Coating on Al Substrate with Different Surface Pretreatments in Cold Spray, Mater. Lett., 2015, 138, p 143-147CrossRefGoogle Scholar
  47. 47.
    S. Guetta, M.H. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi, and K. Ogawa, Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats, J. Therm. Spray Technol., 2009, 18(3), p 331-342CrossRefGoogle Scholar
  48. 48.
    H.-T. Wang, C.-J. Li, G.-J. Yang, and C.-X. Li, Cold Spraying of Fe/Al Powder Mixture: Coating Characteristics and Influence of Heat Treatment on the Phase Structure, Appl. Surf. Sci., 2008, 255(5, Part 1), p 2538-2544CrossRefGoogle Scholar
  49. 49.
    I. Manna and J. Dutta Majumdar, Enhanced Kinetics of Diffusion Coating of Aluminium on Copper by Boundary Diffusion, J. Mater. Sci. Lett., 1993, 12(12), p 920-922CrossRefGoogle Scholar
  50. 50.
    T. Price, P. Shipway, D. McCartney, E. Calla, and D. Zhang, A Method for Characterizing the Degree of Inter-particle Bond Formation in Cold Sprayed Coatings, J. Therm. Spray Technol., 2007, 16(4), p 566-570CrossRefGoogle Scholar
  51. 51.
    C.J. Li, W.Y. Li, and H.L. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 2006, 15(2), p 212-222CrossRefGoogle Scholar
  52. 52.
    K. Balani, A. Agarwal, S. Seal, and J. Karthikeyan, Transmission Electron Microscopy of Cold Sprayed 1100 Aluminum Coating, Scr. Mater., 2005, 53(7), p 845-850CrossRefGoogle Scholar
  53. 53.
    C. Borchers, F. Gärtner, T. Stoltenhoff, and H. Kreye, Microstructural Bonding Features of Cold Sprayed Face Centered Cubic Metals, J. Appl. Phys., 2004, 96(8), p 4288CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.LERMPS, ICB, UMR 6303, CNRSUniv. Bourgogne Franche-Comté, UTBMBelfortFrance
  2. 2.National Engineering Laboratory for Modern Materials Surface Engineering Technology, The Key Lab of Guangdong for Modern Surface Engineering TechnologyGuangdong Institute of New MaterialsGuangzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Advanced Special Steels, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations