Skip to main content

Thermal Plasma Spraying as a New Approach for Preparation of Zinc Biodegradable Scaffolds: A Complex Material Characterization

A Correction to this article was published on 23 October 2019

This article has been updated

Abstract

Zinc based materials have been studied as candidates for the fabrication of biodegradable implants. For applications in orthopedics, porous materials with reduced modulus of elasticity are desirable. Fabrication of porous zinc is challenging due to several processing difficulties, such as low melting point, easy evaporation and high reactivity with many porogen agents. In this work, we prepared a porous zinc sheet by thermal plasma spraying with a porosity of 16.8%. Mechanical, corrosion and biological characteristics of the prepared material were studied in detail. The porous zinc possessed reduced moduli of elasticity (2-6 GPa) and relatively high values of strengths (12-55 MPa—depending on the loading mode). The corrosion rate of the porous zinc was approximately 0.1 mm/a, and the extracts showed excellent murine L929 cell viability. The results suggest that thermal plasma spraying is usable for preparation of biodegradable porous zinc scaffolds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Change history

  • 23 October 2019

    The authors cited Project No. 16-06110S in the acknowledgements of the article. Please note the correct project is Project No. 18-06110S of The Czech Science Foundation.

References

  1. 1.

    Z. Li, X. Gu, S. Lou et al., The Development of Binary Mg-Ca Alloys for use as Biodegradable Materials within Bone, Biomaterials, 2008, 29, p 1329-1344. https://doi.org/10.1016/j.biomaterials.2007.12.021

    CAS  Article  Google Scholar 

  2. 2.

    M. Moravej and D. Mantovani, Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities, Int. J. Mol. Sci., 2011, 12, p 4250-4270

    CAS  Article  Google Scholar 

  3. 3.

    P. Zartner, R. Cesnjevar, H. Singer et al., First Successful Implantation of a Biodegradable Metal Stent into the Left Pulmonary Artery of a Preterm Baby, Catheter Cardiovasc. Interv., 2005, 66, p 590-594. https://doi.org/10.1002/ccd.20520

    Article  Google Scholar 

  4. 4.

    X.-N. Gu and Y.-F. Zheng, A Review on Magnesium Alloys as Biodegradable Materials, Front. Mater. Sci. China, 2010, 4, p 111-115. https://doi.org/10.1007/s11706-010-0024-1

    Article  Google Scholar 

  5. 5.

    Y. Xin, T. Hu, and P.K. Chu, Degradation Behaviour of Pure Magnesium in Simulated Body Fluids with Different Concentrations of HCO3, Corros. Sci., 2011, 53, p 1522-1528. https://doi.org/10.1016/j.corsci.2011.01.015

    CAS  Article  Google Scholar 

  6. 6.

    F. Witte, Reprint of: The History of Biodegradable Magnesium Implants: A Review, Acta Biomater., 2015, 23, p S28-S40. https://doi.org/10.1016/j.actbio.2015.07.017

    Article  Google Scholar 

  7. 7.

    M.P. Staiger, A.M. Pietak, J. Huadmai et al., Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728-1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    CAS  Article  Google Scholar 

  8. 8.

    B.J. Luthringer, F. Feyerabend, and R. Willumeit-Romer, Magnesium-Based Implants: A Mini-Review, Magnes. Res., 2014, 27, p 142-154. https://doi.org/10.1684/mrh.2015.0375

    CAS  Article  Google Scholar 

  9. 9.

    J. Čapek, D. Vojtěch, and A. Oborná, Microstructural and Mechanical Properties of Biodegradable Iron Foam Prepared by Powder Metallurgy, Mater. Des., 2015, 83, p 468-482. https://doi.org/10.1016/j.matdes.2015.06.022

    CAS  Article  Google Scholar 

  10. 10.

    J. Čapek and D. Vojtěch, Microstructural and Mechanical Characteristics of Porous Iron Prepared by Powder Metallurgy, Mater. Sci. Eng., C, 2014, 43, p 494-501. https://doi.org/10.1016/j.msec.2014.06.046

    CAS  Article  Google Scholar 

  11. 11.

    L. Liu, J. Wang, T. Russell et al., The Biological Responses to Magnesium-Based Biodegradable Medical Devices, Metals, 2017, 7, p 514

    Article  Google Scholar 

  12. 12.

    J. Capek, J. Kubasek, D. Vojtech et al., Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of the Hot Forged FeMn30 (wt%) Alloy, Mater. Sci. Eng., C, 2016, 58, p 900-908. https://doi.org/10.1016/j.msec.2015.09.049

    CAS  Article  Google Scholar 

  13. 13.

    P.K. Bowen, J. Drelich, and J. Goldman, Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents, Adv. Mater., 2013, 25, p 2577-2582. https://doi.org/10.1002/adma.201300226

    CAS  Article  Google Scholar 

  14. 14.

    E.R. Shearier, P.K. Bowen, W. He et al., Vitro Cytotoxicity, Adhesion, Proliferation of Human Vascular Cells Exposed to Zinc, ACS Biomater. Sci. Eng., 2016, 2, p 634-642. https://doi.org/10.1021/acsbiomaterials.6b00035

    CAS  Article  Google Scholar 

  15. 15.

    D. Vojtěch, J. Kubásek, J. Šerák et al., Mechanical and Corrosion Properties of Newly Developed Biodegradable Zn-Based Alloys for Bone Fixation, Acta Biomater., 2011, 7, p 3515-3522. https://doi.org/10.1016/j.actbio.2011.05.008

    CAS  Article  Google Scholar 

  16. 16.

    K. Torne, M. Larsson, A. Norlin et al., Degradation of Zinc in Saline Solutions, Plasma, Whole Blood, J. Biomed. Mater. Res., Part B, 2016, 104, p 1141-1151. https://doi.org/10.1002/jbm.b.33458

    CAS  Article  Google Scholar 

  17. 17.

    M. Yamaguchi, Role of Nutritional Zinc in the Prevention of Osteoporosis, Mol. Cell. Biochem., 2010, 338, p 241-254. https://doi.org/10.1007/s11010-009-0358-0

    CAS  Article  Google Scholar 

  18. 18.

    S.W. Suh, K.B. Jensen, M.S. Jensen et al., Histochemically-Reactive Zinc in Amyloid Plaques, Angiopathy, Degenerating Neurons of Alzheimer’s Diseased Brains, Brain Res., 2000, 852, p 274-278. https://doi.org/10.1016/S0006-8993(99)02096-X

    CAS  Article  Google Scholar 

  19. 19.

    S. Chandrasekharan, S. Kumar, C.M. Valley et al., Proprietary Science, Open Science and the Role of Patent Disclosure: The Case of Zinc-Finger Proteins, Nat. Biotechnol., 2009, 27, p 140-144. https://doi.org/10.1038/nbt0209-140

    CAS  Article  Google Scholar 

  20. 20.

    Y.E. Cho, R.A.R. Lomeda, H.I. Shin et al., Zinc Depletion Transiently Retards Osteogenesis and Suppresses Matrix Mineralisation, Proc Nutr Soc, 2010, 69, p E474. https://doi.org/10.1017/s002966511000337x

    Article  Google Scholar 

  21. 21.

    B. Sandstrom, Considerations in Estimates of Requirements and Critical Intake of Zinc. Adaption, Availability and Interactions, Analyst, 1995, 120, p 913-915. https://doi.org/10.1039/AN9952000913

    CAS  Article  Google Scholar 

  22. 22.

    G.J. Fosmire, Zinc Toxicity, Am. J. Clin. Nutr., 1990, 51, p 225-227. https://doi.org/10.1093/ajcn/51.2.225

    CAS  Article  Google Scholar 

  23. 23.

    X.G. Miao and D. Sun, Graded/Gradient Porous Biomaterials, Materials, 2010, 3, p 26-47. https://doi.org/10.3390/ma3010026

    CAS  Article  Google Scholar 

  24. 24.

    A.C. Jones, C.H. Arns, A.P. Sheppard et al., Assessment of Bone Ingrowth into Porous Biomaterials Using MICRO-CT, Biomaterials, 2007, 28, p 2491-2504. https://doi.org/10.1016/j.biomaterials.2007.01.046

    CAS  Article  Google Scholar 

  25. 25.

    F. Bai, J.K. Zhang, Z. Wang et al., The Effect of Pore Size on Tissue Ingrowth and Neovascularization in Porous Bioceramics of Controlled Architecture In Vivo, Biomed. Mater., 2011, 6, p 10. https://doi.org/10.1088/1748-6041/6/1/015007

    CAS  Article  Google Scholar 

  26. 26.

    X.-H. Wang, J.-S. Li, R. Hu et al., Mechanical Properties of Porous Titanium with Different Distributions of Pore Size, Trans. Nonferrous Met. Soc. China, 2013, 23, p 2317-2322. https://doi.org/10.1016/s1003-6326(13)62835-1

    CAS  Article  Google Scholar 

  27. 27.

    R. Stamp, P. Fox, W. O’Neill et al., The Development of a Scanning Strategy for the Manufacture of Porous Biomaterials by Selective Laser Melting, J. Mater. Sci. Mater. Med., 2009, 20, p 1839. https://doi.org/10.1007/s10856-009-3763-8

    CAS  Article  Google Scholar 

  28. 28.

    J. Čapek, M. Machová, M. Fousová et al., Highly Porous, Low Elastic Modulus 316L Stainless Steel Scaffold Prepared by Selective Laser Melting, Mater. Sci. Eng., C, 2016, 69, p 631-639. https://doi.org/10.1016/j.msec.2016.07.027

    CAS  Article  Google Scholar 

  29. 29.

    M. Fousová, D. Vojtěch, J. Kubásek et al., Promising Characteristics of Gradient Porosity Ti-6Al-4 V Alloy Prepared by SLM Process, J. Mech. Behav. Biomed. Mater., 2017, 69, p 368-376. https://doi.org/10.1016/j.jmbbm.2017.01.043

    CAS  Article  Google Scholar 

  30. 30.

    S. Deville, Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities, Materials, 2010, 3, p 1913

    CAS  Article  Google Scholar 

  31. 31.

    J. Capek, S. Msallamova, E. Jablonska et al., A Novel High-Strength and Highly Corrosive Biodegradable Fe-Pd Alloy: Structural, Mechanical and In Vitro Corrosion and Cytotoxicity Study, Mater. Sci. Eng., C, 2017, 79, p 550-562. https://doi.org/10.1016/j.msec.2017.05.100

    CAS  Article  Google Scholar 

  32. 32.

    J. Čapek and D. Vojtěch, Powder Metallurgical Techniques for Fabrication of Biomaterials, Manuf. Technol., 2015, 15, p 964-969

    Google Scholar 

  33. 33.

    J. Capek and D. Vojtech, Porous Magnesium for Medical Applications—Influence of Powder Size on Mechanical Properties. in Materials Structure and Micromechanics of Fracture Vii ed. by P. Sandera (2014), pp. 342–345.

  34. 34.

    J. Capek and D. Vojtech, Effect of Sintering Conditions on the Microstructural and Mechanical Characteristics of Porous Magnesium Materials Prepared by Powder Metallurgy, Mater. Sci. Eng., C, 2014, 35, p 21-28. https://doi.org/10.1016/j.msec.2013.10.014

    CAS  Article  Google Scholar 

  35. 35.

    J. Capek and D. Vojtech, Properties of Porous Magnesium Prepared by Powder Metallurgy, Mater. Sci. Eng., C, 2013, 33, p 564-569. https://doi.org/10.1016/j.msec.2012.10.002

    CAS  Article  Google Scholar 

  36. 36.

    A. Ibrahim, F. Zhang, E. Otterstein et al., Processing of Porous Ti and Ti5Mn Foams by Spark Plasma Sintering, Mater. Des., 2011, 32, p 146-153. https://doi.org/10.1016/j.matdes.2010.06.019

    CAS  Article  Google Scholar 

  37. 37.

    M. Fousova, D. Vojtech, E. Jablonska et al., Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations, Materials, 2017, 10, p 987

    Article  Google Scholar 

  38. 38.

    L. Müller and F.A. Müller, Preparation of SBF with Different HCO3-Content and Its Influence on the Composition of Biomimetic Apatites, Acta Biomater., 2006, 2, p 181-189. https://doi.org/10.1016/j.actbio.2005.11.001

    Article  Google Scholar 

  39. 39.

    ASTM-G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals (Annual Book of ASTM Standards, 2004)

  40. 40.

    D. Vojtěch, Materiály a jejich mezní stavy, VŠCHT Praha (2010), ISBN: 978-80-7080-741-5

  41. 41.

    C.E. Wen, M. Mabuchi, Y. Yamada et al., Processing of Biocompatible Porous Ti and Mg, Scr. Mater., 2001, 45, p 1147-1153. https://doi.org/10.1016/s1359-6462(01)01132-0

    CAS  Article  Google Scholar 

  42. 42.

    J. Čapek, E. Jablonská, J. Lipov et al., Preparation and Characterization of Porous Zinc Prepared by Spark Plasma Sintering as a Material for Biodegradable Scaffolds, Mater. Chem. Phys., 2018, 203, p 249-258. https://doi.org/10.1016/j.matchemphys.2017.10.008

    CAS  Article  Google Scholar 

  43. 43.

    S. Wu, X. Liu, K.W.K. Yeung et al., Biomimetic Porous Scaffolds for Bone Tissue Engineering, Mater. Sci. Eng., R, 2014, 80, p 1-36. https://doi.org/10.1016/j.mser.2014.04.001

    Article  Google Scholar 

  44. 44.

    H. Zhuang, Y. Han, and A. Feng, Preparation, Mechanical Properties and In Vitro Biodegradation of Porous Magnesium Scaffolds, Mater. Sci. Eng., C, 2008, 28, p 1462-1466. https://doi.org/10.1016/j.msec.2008.04.001

    CAS  Article  Google Scholar 

  45. 45.

    P. Quadbeck, R. Hauser, K. Kümmel, et al., Iron Based Cellular Metals for Degradable Synthetic Bone Replacement, in PM2010 World Congress, Florenz, Italy

  46. 46.

    L. Zhao, Z. Zhang, Y. Song et al., Mechanical Properties and In Vitro Biodegradation of Newly Developed Porous Zn Scaffolds for Biomedical Applications, Mater. Des., 2016, 108, p 136-144. https://doi.org/10.1016/j.matdes.2016.06.080

    CAS  Article  Google Scholar 

  47. 47.

    D.A. Jones, Principles and Prevention of Corrosion, Prentice Hall, Upper Saddle River, 1996

    Google Scholar 

  48. 48.

    L. Liu, Y. Meng, C. Dong et al., Initial Formation of Corrosion Products on Pure Zinc in Simulated Body Fluid, J. Mater. Sci. Technol., 2018, 34, p 2271-2282. https://doi.org/10.1016/j.jmst.2018.05.005

    Article  Google Scholar 

  49. 49.

    E. Turianicová, M. Kaňuchová, A. Zorkovská et al., CO2 Utilization for Fast Preparation of Nanocrystalline Hydrozincite, J. CO2 Util., 2016, 16, p 328-335. https://doi.org/10.1016/j.jcou.2016.08.007

    CAS  Article  Google Scholar 

  50. 50.

    M.R. Mahmoudian, W.J. Basirun, Y. Alias et al., Facile Fabrication of Zn/Zn5(OH)8Cl2·H2O Flower-Like Nanostructure on the Surface of Zn Coated with Poly (N-methyl pyrrole), Appl. Surf. Sci., 2011, 257, p 10539-10544. https://doi.org/10.1016/j.apsusc.2011.07.046

    CAS  Article  Google Scholar 

  51. 51.

    J. Kubásek, D. Vojtěch, E. Jablonská et al., Structure, Mechanical Characteristics and In Vitro Degradation, Cytotoxicity, Genotoxicity and Mutagenicity of Novel Biodegradable Zn-Mg Alloys, Mater. Sci. Eng., C, 2016, 58, p 24-35. https://doi.org/10.1016/j.msec.2015.08.015

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The authors (J. Čapek, J. Pinc, J. Kubásek, P. Veřtát, D. Vojtěch and Š. Msallamová) would like to thank the Czech Science Foundation (Project No. 16-06110S) for supporting this research. Moreover, J. Čapek would like to thank the Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760) for supporting of this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Čapek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Čapek, J., Pinc, J., Msallamová, Š. et al. Thermal Plasma Spraying as a New Approach for Preparation of Zinc Biodegradable Scaffolds: A Complex Material Characterization. J Therm Spray Tech 28, 826–841 (2019). https://doi.org/10.1007/s11666-019-00849-1

Download citation

Keywords

  • biodegradable zinc
  • corrosion
  • mechanical properties
  • microstructure
  • thermal plasma spraying