Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 4, pp 826–841 | Cite as

Thermal Plasma Spraying as a New Approach for Preparation of Zinc Biodegradable Scaffolds: A Complex Material Characterization

  • Jaroslav ČapekEmail author
  • Jan Pinc
  • Šárka Msallamová
  • Eva Jablonská
  • Petr Veřtát
  • Jiří Kubásek
  • Dalibor Vojtěch
Peer Reviewed
  • 131 Downloads

Abstract

Zinc based materials have been studied as candidates for the fabrication of biodegradable implants. For applications in orthopedics, porous materials with reduced modulus of elasticity are desirable. Fabrication of porous zinc is challenging due to several processing difficulties, such as low melting point, easy evaporation and high reactivity with many porogen agents. In this work, we prepared a porous zinc sheet by thermal plasma spraying with a porosity of 16.8%. Mechanical, corrosion and biological characteristics of the prepared material were studied in detail. The porous zinc possessed reduced moduli of elasticity (2-6 GPa) and relatively high values of strengths (12-55 MPa—depending on the loading mode). The corrosion rate of the porous zinc was approximately 0.1 mm/a, and the extracts showed excellent murine L929 cell viability. The results suggest that thermal plasma spraying is usable for preparation of biodegradable porous zinc scaffolds.

Keywords

biodegradable zinc corrosion mechanical properties microstructure thermal plasma spraying 

Notes

Acknowledgment

The authors (J. Čapek, J. Pinc, J. Kubásek, P. Veřtát, D. Vojtěch and Š. Msallamová) would like to thank the Czech Science Foundation (Project No. 16-06110S) for supporting this research. Moreover, J. Čapek would like to thank the Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760) for supporting of this research.

References

  1. 1.
    Z. Li, X. Gu, S. Lou et al., The Development of Binary Mg-Ca Alloys for use as Biodegradable Materials within Bone, Biomaterials, 2008, 29, p 1329-1344.  https://doi.org/10.1016/j.biomaterials.2007.12.021 CrossRefGoogle Scholar
  2. 2.
    M. Moravej and D. Mantovani, Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities, Int. J. Mol. Sci., 2011, 12, p 4250-4270CrossRefGoogle Scholar
  3. 3.
    P. Zartner, R. Cesnjevar, H. Singer et al., First Successful Implantation of a Biodegradable Metal Stent into the Left Pulmonary Artery of a Preterm Baby, Catheter Cardiovasc. Interv., 2005, 66, p 590-594.  https://doi.org/10.1002/ccd.20520 CrossRefGoogle Scholar
  4. 4.
    X.-N. Gu and Y.-F. Zheng, A Review on Magnesium Alloys as Biodegradable Materials, Front. Mater. Sci. China, 2010, 4, p 111-115.  https://doi.org/10.1007/s11706-010-0024-1 CrossRefGoogle Scholar
  5. 5.
    Y. Xin, T. Hu, and P.K. Chu, Degradation Behaviour of Pure Magnesium in Simulated Body Fluids with Different Concentrations of HCO3, Corros. Sci., 2011, 53, p 1522-1528.  https://doi.org/10.1016/j.corsci.2011.01.015 CrossRefGoogle Scholar
  6. 6.
    F. Witte, Reprint of: The History of Biodegradable Magnesium Implants: A Review, Acta Biomater., 2015, 23, p S28-S40.  https://doi.org/10.1016/j.actbio.2015.07.017 CrossRefGoogle Scholar
  7. 7.
    M.P. Staiger, A.M. Pietak, J. Huadmai et al., Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728-1734.  https://doi.org/10.1016/j.biomaterials.2005.10.003 CrossRefGoogle Scholar
  8. 8.
    B.J. Luthringer, F. Feyerabend, and R. Willumeit-Romer, Magnesium-Based Implants: A Mini-Review, Magnes. Res., 2014, 27, p 142-154.  https://doi.org/10.1684/mrh.2015.0375 Google Scholar
  9. 9.
    J. Čapek, D. Vojtěch, and A. Oborná, Microstructural and Mechanical Properties of Biodegradable Iron Foam Prepared by Powder Metallurgy, Mater. Des., 2015, 83, p 468-482.  https://doi.org/10.1016/j.matdes.2015.06.022 CrossRefGoogle Scholar
  10. 10.
    J. Čapek and D. Vojtěch, Microstructural and Mechanical Characteristics of Porous Iron Prepared by Powder Metallurgy, Mater. Sci. Eng., C, 2014, 43, p 494-501.  https://doi.org/10.1016/j.msec.2014.06.046 CrossRefGoogle Scholar
  11. 11.
    L. Liu, J. Wang, T. Russell et al., The Biological Responses to Magnesium-Based Biodegradable Medical Devices, Metals, 2017, 7, p 514CrossRefGoogle Scholar
  12. 12.
    J. Capek, J. Kubasek, D. Vojtech et al., Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of the Hot Forged FeMn30 (wt%) Alloy, Mater. Sci. Eng., C, 2016, 58, p 900-908.  https://doi.org/10.1016/j.msec.2015.09.049 CrossRefGoogle Scholar
  13. 13.
    P.K. Bowen, J. Drelich, and J. Goldman, Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents, Adv. Mater., 2013, 25, p 2577-2582.  https://doi.org/10.1002/adma.201300226 CrossRefGoogle Scholar
  14. 14.
    E.R. Shearier, P.K. Bowen, W. He et al., Vitro Cytotoxicity, Adhesion, Proliferation of Human Vascular Cells Exposed to Zinc, ACS Biomater. Sci. Eng., 2016, 2, p 634-642.  https://doi.org/10.1021/acsbiomaterials.6b00035 CrossRefGoogle Scholar
  15. 15.
    D. Vojtěch, J. Kubásek, J. Šerák et al., Mechanical and Corrosion Properties of Newly Developed Biodegradable Zn-Based Alloys for Bone Fixation, Acta Biomater., 2011, 7, p 3515-3522.  https://doi.org/10.1016/j.actbio.2011.05.008 CrossRefGoogle Scholar
  16. 16.
    K. Torne, M. Larsson, A. Norlin et al., Degradation of Zinc in Saline Solutions, Plasma, Whole Blood, J. Biomed. Mater. Res., Part B, 2016, 104, p 1141-1151.  https://doi.org/10.1002/jbm.b.33458 CrossRefGoogle Scholar
  17. 17.
    M. Yamaguchi, Role of Nutritional Zinc in the Prevention of Osteoporosis, Mol. Cell. Biochem., 2010, 338, p 241-254.  https://doi.org/10.1007/s11010-009-0358-0 CrossRefGoogle Scholar
  18. 18.
    S.W. Suh, K.B. Jensen, M.S. Jensen et al., Histochemically-Reactive Zinc in Amyloid Plaques, Angiopathy, Degenerating Neurons of Alzheimer’s Diseased Brains, Brain Res., 2000, 852, p 274-278.  https://doi.org/10.1016/S0006-8993(99)02096-X CrossRefGoogle Scholar
  19. 19.
    S. Chandrasekharan, S. Kumar, C.M. Valley et al., Proprietary Science, Open Science and the Role of Patent Disclosure: The Case of Zinc-Finger Proteins, Nat. Biotechnol., 2009, 27, p 140-144.  https://doi.org/10.1038/nbt0209-140 CrossRefGoogle Scholar
  20. 20.
    Y.E. Cho, R.A.R. Lomeda, H.I. Shin et al., Zinc Depletion Transiently Retards Osteogenesis and Suppresses Matrix Mineralisation, Proc Nutr Soc, 2010, 69, p E474.  https://doi.org/10.1017/s002966511000337x CrossRefGoogle Scholar
  21. 21.
    B. Sandstrom, Considerations in Estimates of Requirements and Critical Intake of Zinc. Adaption, Availability and Interactions, Analyst, 1995, 120, p 913-915.  https://doi.org/10.1039/AN9952000913 CrossRefGoogle Scholar
  22. 22.
    G.J. Fosmire, Zinc Toxicity, Am. J. Clin. Nutr., 1990, 51, p 225-227.  https://doi.org/10.1093/ajcn/51.2.225 CrossRefGoogle Scholar
  23. 23.
    X.G. Miao and D. Sun, Graded/Gradient Porous Biomaterials, Materials, 2010, 3, p 26-47.  https://doi.org/10.3390/ma3010026 CrossRefGoogle Scholar
  24. 24.
    A.C. Jones, C.H. Arns, A.P. Sheppard et al., Assessment of Bone Ingrowth into Porous Biomaterials Using MICRO-CT, Biomaterials, 2007, 28, p 2491-2504.  https://doi.org/10.1016/j.biomaterials.2007.01.046 CrossRefGoogle Scholar
  25. 25.
    F. Bai, J.K. Zhang, Z. Wang et al., The Effect of Pore Size on Tissue Ingrowth and Neovascularization in Porous Bioceramics of Controlled Architecture In Vivo, Biomed. Mater., 2011, 6, p 10.  https://doi.org/10.1088/1748-6041/6/1/015007 CrossRefGoogle Scholar
  26. 26.
    X.-H. Wang, J.-S. Li, R. Hu et al., Mechanical Properties of Porous Titanium with Different Distributions of Pore Size, Trans. Nonferrous Met. Soc. China, 2013, 23, p 2317-2322.  https://doi.org/10.1016/s1003-6326(13)62835-1 CrossRefGoogle Scholar
  27. 27.
    R. Stamp, P. Fox, W. O’Neill et al., The Development of a Scanning Strategy for the Manufacture of Porous Biomaterials by Selective Laser Melting, J. Mater. Sci. Mater. Med., 2009, 20, p 1839.  https://doi.org/10.1007/s10856-009-3763-8 CrossRefGoogle Scholar
  28. 28.
    J. Čapek, M. Machová, M. Fousová et al., Highly Porous, Low Elastic Modulus 316L Stainless Steel Scaffold Prepared by Selective Laser Melting, Mater. Sci. Eng., C, 2016, 69, p 631-639.  https://doi.org/10.1016/j.msec.2016.07.027 CrossRefGoogle Scholar
  29. 29.
    M. Fousová, D. Vojtěch, J. Kubásek et al., Promising Characteristics of Gradient Porosity Ti-6Al-4 V Alloy Prepared by SLM Process, J. Mech. Behav. Biomed. Mater., 2017, 69, p 368-376.  https://doi.org/10.1016/j.jmbbm.2017.01.043 CrossRefGoogle Scholar
  30. 30.
    S. Deville, Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities, Materials, 2010, 3, p 1913CrossRefGoogle Scholar
  31. 31.
    J. Capek, S. Msallamova, E. Jablonska et al., A Novel High-Strength and Highly Corrosive Biodegradable Fe-Pd Alloy: Structural, Mechanical and In Vitro Corrosion and Cytotoxicity Study, Mater. Sci. Eng., C, 2017, 79, p 550-562.  https://doi.org/10.1016/j.msec.2017.05.100 CrossRefGoogle Scholar
  32. 32.
    J. Čapek and D. Vojtěch, Powder Metallurgical Techniques for Fabrication of Biomaterials, Manuf. Technol., 2015, 15, p 964-969Google Scholar
  33. 33.
    J. Capek and D. Vojtech, Porous Magnesium for Medical Applications—Influence of Powder Size on Mechanical Properties. in Materials Structure and Micromechanics of Fracture Vii ed. by P. Sandera (2014), pp. 342–345.Google Scholar
  34. 34.
    J. Capek and D. Vojtech, Effect of Sintering Conditions on the Microstructural and Mechanical Characteristics of Porous Magnesium Materials Prepared by Powder Metallurgy, Mater. Sci. Eng., C, 2014, 35, p 21-28.  https://doi.org/10.1016/j.msec.2013.10.014 CrossRefGoogle Scholar
  35. 35.
    J. Capek and D. Vojtech, Properties of Porous Magnesium Prepared by Powder Metallurgy, Mater. Sci. Eng., C, 2013, 33, p 564-569.  https://doi.org/10.1016/j.msec.2012.10.002 CrossRefGoogle Scholar
  36. 36.
    A. Ibrahim, F. Zhang, E. Otterstein et al., Processing of Porous Ti and Ti5Mn Foams by Spark Plasma Sintering, Mater. Des., 2011, 32, p 146-153.  https://doi.org/10.1016/j.matdes.2010.06.019 CrossRefGoogle Scholar
  37. 37.
    M. Fousova, D. Vojtech, E. Jablonska et al., Novel Approach in the Use of Plasma Spray: Preparation of Bulk Titanium for Bone Augmentations, Materials, 2017, 10, p 987CrossRefGoogle Scholar
  38. 38.
    L. Müller and F.A. Müller, Preparation of SBF with Different HCO3-Content and Its Influence on the Composition of Biomimetic Apatites, Acta Biomater., 2006, 2, p 181-189.  https://doi.org/10.1016/j.actbio.2005.11.001 CrossRefGoogle Scholar
  39. 39.
    ASTM-G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals (Annual Book of ASTM Standards, 2004)Google Scholar
  40. 40.
    D. Vojtěch, Materiály a jejich mezní stavy, VŠCHT Praha (2010), ISBN: 978-80-7080-741-5Google Scholar
  41. 41.
    C.E. Wen, M. Mabuchi, Y. Yamada et al., Processing of Biocompatible Porous Ti and Mg, Scr. Mater., 2001, 45, p 1147-1153.  https://doi.org/10.1016/s1359-6462(01)01132-0 CrossRefGoogle Scholar
  42. 42.
    J. Čapek, E. Jablonská, J. Lipov et al., Preparation and Characterization of Porous Zinc Prepared by Spark Plasma Sintering as a Material for Biodegradable Scaffolds, Mater. Chem. Phys., 2018, 203, p 249-258.  https://doi.org/10.1016/j.matchemphys.2017.10.008 CrossRefGoogle Scholar
  43. 43.
    S. Wu, X. Liu, K.W.K. Yeung et al., Biomimetic Porous Scaffolds for Bone Tissue Engineering, Mater. Sci. Eng., R, 2014, 80, p 1-36.  https://doi.org/10.1016/j.mser.2014.04.001 CrossRefGoogle Scholar
  44. 44.
    H. Zhuang, Y. Han, and A. Feng, Preparation, Mechanical Properties and In Vitro Biodegradation of Porous Magnesium Scaffolds, Mater. Sci. Eng., C, 2008, 28, p 1462-1466.  https://doi.org/10.1016/j.msec.2008.04.001 CrossRefGoogle Scholar
  45. 45.
    P. Quadbeck, R. Hauser, K. Kümmel, et al., Iron Based Cellular Metals for Degradable Synthetic Bone Replacement, in PM2010 World Congress, Florenz, Italy Google Scholar
  46. 46.
    L. Zhao, Z. Zhang, Y. Song et al., Mechanical Properties and In Vitro Biodegradation of Newly Developed Porous Zn Scaffolds for Biomedical Applications, Mater. Des., 2016, 108, p 136-144.  https://doi.org/10.1016/j.matdes.2016.06.080 CrossRefGoogle Scholar
  47. 47.
    D.A. Jones, Principles and Prevention of Corrosion, Prentice Hall, Upper Saddle River, 1996Google Scholar
  48. 48.
    L. Liu, Y. Meng, C. Dong et al., Initial Formation of Corrosion Products on Pure Zinc in Simulated Body Fluid, J. Mater. Sci. Technol., 2018, 34, p 2271-2282.  https://doi.org/10.1016/j.jmst.2018.05.005 CrossRefGoogle Scholar
  49. 49.
    E. Turianicová, M. Kaňuchová, A. Zorkovská et al., CO2 Utilization for Fast Preparation of Nanocrystalline Hydrozincite, J. CO2 Util., 2016, 16, p 328-335.  https://doi.org/10.1016/j.jcou.2016.08.007 CrossRefGoogle Scholar
  50. 50.
    M.R. Mahmoudian, W.J. Basirun, Y. Alias et al., Facile Fabrication of Zn/Zn5(OH)8Cl2·H2O Flower-Like Nanostructure on the Surface of Zn Coated with Poly (N-methyl pyrrole), Appl. Surf. Sci., 2011, 257, p 10539-10544.  https://doi.org/10.1016/j.apsusc.2011.07.046 CrossRefGoogle Scholar
  51. 51.
    J. Kubásek, D. Vojtěch, E. Jablonská et al., Structure, Mechanical Characteristics and In Vitro Degradation, Cytotoxicity, Genotoxicity and Mutagenicity of Novel Biodegradable Zn-Mg Alloys, Mater. Sci. Eng., C, 2016, 58, p 24-35.  https://doi.org/10.1016/j.msec.2015.08.015 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Jaroslav Čapek
    • 1
    Email author
  • Jan Pinc
    • 1
    • 2
  • Šárka Msallamová
    • 2
  • Eva Jablonská
    • 3
  • Petr Veřtát
    • 1
  • Jiří Kubásek
    • 2
  • Dalibor Vojtěch
    • 2
  1. 1.Institute of PhysicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Department of Metals and Corrosion EngineeringUniversity of Chemistry and Technology PraguePrague 6Czech Republic
  3. 3.Department of Biochemistry and MicrobiologyUniversity of Chemistry and Technology PraguePrague 6Czech Republic

Personalised recommendations