Advertisement

Journal of Thermal Spray Technology

, Volume 28, Issue 4, pp 690–705 | Cite as

Characteristics of Conventional and Cascaded Arc Plasma Spray-Deposited Ceramic Under Standard and High-Throughput Conditions

  • Ramachandran Chidambaram Seshadri
  • Sanjay SampathEmail author
Peer Reviewed
  • 119 Downloads

Abstract

Cascaded arc plasma torches have now become mainstream in thermal spray industry incorporating both multiple and single cathode configurations. Although there are anecdotal descriptions available for cascaded arc torches in terms of enhanced melting capability and overall process reliability, a critical and direct comparison of material interaction between the two technologies (cascaded arc and conventional torch configurations) through robust scientific methods is not available. In this article, two commercially available APS torches, namely, the conventional torch (F4MB) and the cascaded arc plasma torch (Sinplex Pro), were compared in the same spray cell using the same control equipment by adopting a systematic set of experiments involving voltage measurements, particle behavior, deposit formation dynamics, and infrared-based spray footprint heat flux quantification. The analysis of the data has led to quantitative correlations between torch configurations. The powder loading study indicated the enhanced melting capability of cascaded arc at equivalent parameters along with expanded and more uniform particle temperature over larger feed rates. The combination of higher feed rate and melt efficiency leads to distinction in coating stress evolution and microstructure. The integrated measurements suggest a scaling parameter that can establish process equivalency parameters to guide the transition from conventional to cascade torches.

Keywords

atmospheric plasma spray (APS) diagnostics in-situ monitoring on-line particle behavior spray efficiency stability of TS process zirconia 

Notes

Acknowledgment

This work was supported by The Industrial Consortium for Thermal Spray Technology of Stony Brook University. The authors thank Dr. Raja Singaravelu for performing heat flux measurements and calculations. The internal discussions on sample preparation, coating property measurements, and evaluations with Dr. Vaishak Viswanathan, and Dr. Gopal Dwivedi are acknowledged. The authors appreciate the Oerlikon Metco Team: Dr. Richard Schmid, Michael Tobin, Dr. Jose Colmenares-Angulo, David Hawley, Ronald Molz, Riston Rocchio-Heller, and Jonathan Gutleber for the help and support in setting up Sinplex Pro Cascaded arc plasma torch and 9MC spray control system at the Centre for Thermal Spray Research (CTSR), Stony Brook University, New York.

References

  1. 1.
    H. Rob, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, and D. Ghosh, Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges, J. Power Sour., 2007, 2(170), p 308-323Google Scholar
  2. 2.
    V. Armelle, C. Moreau, N.J. Themelis, and C. Chazelas, A Perspective on Plasma Spray Technology, Plasma Chem. Plasma Process., 2015, 3(35), p 491-509Google Scholar
  3. 3.
    S. Ghorui and A.K. Das, Origin of Fluctuations in Atmospheric Pressure Arc Plasma Devices, Phys. Rev., 2004, 2(69), p 2-6Google Scholar
  4. 4.
    X.H. Bing, L.L. Zheng, and T. Streibl, A Critical Assessment of Particle Temperature Distributions During Plasma Spraying: Numerical Studies for YSZ, Plasma Chem. Plasma Process., 2006, 1(26), p 53-72Google Scholar
  5. 5.
    O.P. Solonenko and M.F. Zhukov, Investigation and Design of Thermal Plasma Generators, Thermal Plasma and New Materials Technology, 1st ed., O.P. Solonenko, Ed., Cambridge Interscience Publishing, Cambridge, 1994, p 509-515Google Scholar
  6. 6.
    M. Javad and M.I. Boulos, Thermal Plasma Sources: How Well are They Adapted to Process Needs? Plasma Chem. Plasma Process., 2015, 3(35), p 421-436Google Scholar
  7. 7.
    J.L. Marqués, G. Forster, and J. Schein, Multi-Electrode Plasma Torches: Motivation for Development and Current State-of-the-Art, Open Plasma Phys. J., 2009, 1(2), p 89-98CrossRefGoogle Scholar
  8. 8.
    D. Hawley, R. Molz, and D. Chen, Evaluating a Single Arc Cascaded Plasma Gun, Thermal Spray 2012: Proceedings of the International Thermal Spray Conference, Air, Land, Water, and the Human Body: Thermal Spray Science and Applications, B.R. Marple, A. Agarwal, L. Filofteia-Toma, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and A. McDonald, Ed., Springer, Houston, Texas, 2013, p 886-891Google Scholar
  9. 9.
    J. Matejicek, S. Sampath, P.C. Brand, and H.J. Prask, Quenching, Thermal and Residual Stress in Plasma Sprayed Deposits: NiCrAlY and YSZ Coatings, Acta Mater., 1999, 2(47), p 607-617CrossRefGoogle Scholar
  10. 10.
    G. Dwivedi, T. Nakamura, and S. Sampath, Controlled Introduction of Anelasticity in Plasma-Sprayed Ceramics, J. Am. Ceram. Soc., 2011, 1(94), p 104-111CrossRefGoogle Scholar
  11. 11.
    E. Nogues, M. Vardelle, P. Fauchais, and P. Granger, Arc Voltage Fluctuations: Comparison Between Two Plasma Torch Types, Surf. Coat. Technol., 2008, 18(202), p 4387-4393CrossRefGoogle Scholar
  12. 12.
    S. Kentaro, Y. Tan, and S. Sampath, Powder Loading Effects of Yttria-Stabilized Zirconia in Atmospheric dc Plasma Spraying, Plasma Chem. Plasma Process., 2010, 6(30), p 761-778Google Scholar
  13. 13.
    V. Srinivasan, M. Friis, A. Vaidya, T. Streibl, and S. Sampath, Particle Injection in Direct Current Air Plasma Spray: Salient Observations and Optimization Strategies, Plasma Chem. Plasma Process., 2007, 5(27), p 609-623CrossRefGoogle Scholar
  14. 14.
    Z. Lidong, K. Seemann, A. Fischer, and E. Lugscheider, Study on Atmospheric Plasma Spraying of Al2O3 Using On-line Particle Monitoring, Surf. Coat. Technol., 2003, 2–3(168), p 186-190Google Scholar
  15. 15.
    S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control, and In Situ Measurement of Coating Properties: An Integrated Approach Toward Establishing Process-Property Correlations, J. Therm. Spray Technol., 2009, 2(18), p 243-255CrossRefGoogle Scholar
  16. 16.
    J. Matejicek, S. Sampath, D. Gilmore, and R. Neiser, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermally Sprayed Coatings: Part 2: Processing Effects on Properties of Mo Coatings, Acta Mater., 2003, 3(51), p 873-885CrossRefGoogle Scholar
  17. 17.
    C.S. Ramachandran, G. Dwivedi, V. Viswanathan, and S. Sampath, Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements, J. Therm. Spray Technol., 2016, 8(25), p 1666-1683Google Scholar
  18. 18.
    V. Alfredo and S. Sampath, An Integrated Assessment of Process-Microstructure-Property Relationships for Thermal-Sprayed NiCr Coatings, J. Therm. Spray Technol., 2011, 6(20), p 1244-1258Google Scholar
  19. 19.
    T. Claire, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Atmospheric Pressure Plasmas: A Review, Spectrochim. Acta, Part B, 2006, 1(61), p 2-30Google Scholar
  20. 20.
    I. Toru, P. Cronin, D. Bendix, and J.V.R. Heberlein, Anode Attachment Stability and Anode Heat Transfer for High-Intensity Arcs with the Lateral Gas Flow, IEEE Trans. Plasma Sci., 2005, 3(33), p 1123-1128Google Scholar
  21. 21.
    Z. Duan and J. Heberlein, Arc Instabilities in a Plasma Spray Torch, J. Therm. Spray Technol., 2002, 1(11), p 44-51CrossRefGoogle Scholar
  22. 22.
    C.A. Jose, R. Molz, D. Hawley, and C.S. Ramachandran, Thorium-Free Versus Thoriated Plasma Gun Electrodes: Statistical Evaluation of Coating Properties, J. Therm. Spray Technol., 2016, 4(25), p 622-630Google Scholar
  23. 23.
    J. Schein, M. Richter, K.D. Landes, G. Forster, J. Zierhut, and M. Dzulko, Tomographic Investigation of Plasma Jets Produced by Multielectrode Plasma Torches, J. Therm. Spray Technol., 2008, 3(17), p 338-343CrossRefGoogle Scholar
  24. 24.
    M.F. Zhukov and I.M. Zasypkin, Thermal Plasma Torches: Design, Characteristics, Application, M.F. Zhukov, Ed., Cambridge Interscience Publishing, 2007Google Scholar
  25. 25.
    G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 3(16), p 414-424CrossRefGoogle Scholar
  26. 26.
    J.F. Bisson, B. Gauthier, and C. Moreau, Effect of Plasma Fluctuations on In-Flight Particle Parameters, J. Therm. Spray Technol., 2003, 1(12), p 38-43CrossRefGoogle Scholar
  27. 27.
    S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 1(200), p 49-66CrossRefGoogle Scholar
  28. 28.
    Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 1: Planar Geometry, Thin Solid Films, 1997, 1(306), p 23-33CrossRefGoogle Scholar
  29. 29.
    T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 4(5), p 401-405CrossRefGoogle Scholar
  30. 30.
    M. Markus, G. Mauer, R. Mücke, R. Vaßen, H.C. Back, and J. Gibmeier, Investigations on the Initial Stress Evolution During Atmospheric Plasma Spraying of YSZ by In Situ Curvature Measurement, J. Therm. Spray Technol., 2016, 4(25), p 672-683Google Scholar
  31. 31.
    V. Robert, F. Traeger, and D. Stöver, Correlation Between Spraying Conditions and Microcrack Density and Their Influence on Thermal Cycling Life of Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 3(13), p 396-404Google Scholar
  32. 32.
    C.S. Ramachandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology, J. Therm. Spray Technol., 2011, 3(20), p 590-607CrossRefGoogle Scholar
  33. 33.
    G. Hongbo, S. Kuroda, and H. Murakami, Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 4(89), p 1432-1439Google Scholar
  34. 34.
    M. Michael and O. Kesler, Influence of Plasma Heat Flux on Segmentation Cracking and Permeability of Thin Suspension Plasma Sprayed Coatings, Surf. Coat. Technol., 2013, 1(216), p 289-296Google Scholar
  35. 35.
    S. Sampath, X.Y. Jiang, J. Matejicek, A.C. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: A Case Study for Partially Stabilized Zirconia, J. Mater. Sci. Eng. A, 1999, 1(272), p 181-188CrossRefGoogle Scholar
  36. 36.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas Turbine Engine Applications, Science, 2002, 296(5566), p 280-284CrossRefGoogle Scholar
  37. 37.
    D.R. Clarke, Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 1(163), p 67-74CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Ramachandran Chidambaram Seshadri
    • 1
  • Sanjay Sampath
    • 1
    Email author
  1. 1.Center for Thermal Spray Research (CTSR)Stony Brook UniversityStony BrookUSA

Personalised recommendations