Skip to main content

Advertisement

Log in

Effect of Addition of Multimodal YSZ and SiC Powders on the Mechanical Properties of Nanostructured Cr2O3 Plasma-Sprayed Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this research, the effect of the addition of multimodal yttria-stabilized zirconia (YSZ) and SiC reinforcements on the mechanical properties of Cr2O3 plasma-sprayed coatings was studied. For this purpose, the starting powders were ball milled for 5 h and then mixed and agglomerated, prior to spraying. Cr2O3, Cr2O3-20YSZ (CZ), and Cr2O3-20YSZ-10SiC (CZS) coatings were then deposited onto 304L steel substrates using the atmospheric plasma spray process. Microstructural evaluations of the initial/milled powders and the plasma-sprayed coatings were conducted through x-ray diffraction, field emission scanning electron microscopy (FESEM) equipped with energy-dispersive x-ray spectroscopy and porosity measurements. The microscopic images indicated that the multimodal milled powders resulted in nanostructured coatings. Mechanical tests including adhesive strength, fracture toughness, and micro-hardness were used to understand the dependence of the properties of coatings and their microstructure. Adding tough YSZ particles to the C coating considerably increased the toughness through the phase transformation-toughening mechanism of tetragonal zirconia while decreasing micro-hardness of the coating; therefore, intrinsically hard SiC particles were added to the CZ coating to deal with the reduced hardness. Moreover, when compared to pure C coating, CZ, and CZS Composite coatings showed comparable bonding strengths and higher porosities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors are willing to firstly publish this research paper through the highly prestigious journal of “Thermal Spray Technology”. Therefore the datasets generated and analyzed during the current study have not already been available in public. However, it can be available from the corresponding author on a reasonable request.

Notes

  1. Standard cubic feet per hour.

References

  1. D.J. Green, An Introduction to the Mechanical Properties of Ceramics, Cambridge University Press, Cambridge, 1998

    Book  Google Scholar 

  2. L.L. Mishnaevsky, Jr., Three-dimensional Numerical Testing of Microstructures of Particle Reinforced Composites, J. Acta Mater., 2004, 52(14), p 4177-4188

    Article  CAS  Google Scholar 

  3. M.M.E. Rayes, H.S. Abdo, and K.A. Khalil, Erosion-Corrosion of Cermet Coating, J. Electrochem. Sci., 2013, 8, p 1117-1137

    Google Scholar 

  4. R. Banerjee and I. Manna, Ceramic Nanocomposites (Woodhead Publishing, 2013)

  5. E.I.C. Suryanarayana, T. Klassen, and E. Ivanov, Synthesis of Nanocomposites and Amorphous Alloys by Mechanical Alloying, J. Mater. Sci., 2011, 46(19), p 6301-6315

    Article  CAS  Google Scholar 

  6. J. Karch, R. Birringer, and H. Gleiter, Ceramics Ductile at Low Temperature, Nature, 1987, 330, p 556-558

    Article  CAS  Google Scholar 

  7. W.M. Rainforth, The Wear Behaviour of Oxide Ceramics-A Review, J. Mater. Sci., 2004, 39(22), p 6705-6721

    Article  CAS  Google Scholar 

  8. B. Cantor, F.P.E. Dunne, and I.C. Stone, Metal and Ceramic Matrix Composites, 1st edn. (CRC Press, 2003)

  9. B. Basu and K. Balani, Advanced Structural Ceramics, 1st edn. (Wiley-American Ceramic Society, 2011)

  10. A. Vardelle, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440

    Article  CAS  Google Scholar 

  11. I. Adamovich, S.D. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S.M. Thagard, H.R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z.L. Petrovic, L.C. Pitchford, Y.K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. Sanden, and A. Vardelle, The 2017 Plasma Roadmap: Low Temperature Plasma Science and Technology, J. Phys. D Appl. Phys., 2017, 2017(50), p 1-46

    Google Scholar 

  12. V. Chawla, B.S. Sidhu, D. Puri, and S. Prakash, Performance of Plasma Sprayed Nanostructured and Conventional Coatings, J. Aust. Ceram. Soc., 2008, 44(2), p 56-62

    CAS  Google Scholar 

  13. D. Ghosh, A.K. Shukhla, and H. Roy, Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications, J. Inst. Eng.: Series D, 2014, 95(1), p 57-64

    CAS  Google Scholar 

  14. M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, and T.D. Xiao, Development and Implementation of plasma Sprayed Nanostructured Ceramic Coatings, Surf. Coatings Technol., 2001, 146, p 48-54

    Article  Google Scholar 

  15. R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J. Therm. Spray Technol., 2007, 16(1), p 40-63

    Article  CAS  Google Scholar 

  16. N.B. Dahotre and S. Nayak, Nanocoatings for engine application, Surf. Coatings Technol., 2005, 194(1), p 58-67

    Article  CAS  Google Scholar 

  17. M. Brochu and G.E. Kim, Anti-Abrasive Nanocoatings Current and Future Applications, chap. 19 (Woodhead Publishing in Materials, 2015)

  18. G. Skandan, R. Yao, B.H. Kear, Y. Qiao, L. Liu, and T.E. Ficsher, Multimodal Powders: A New Class of Feedstock Material for Thermal Spraying of Hard Coatings, Scr. Mater., 2001, 44(8), p 1699-1702

    Article  CAS  Google Scholar 

  19. G. Skandan, R. Yao, R. Sadangi, B.H. Kear, Y. Qiao, L. Liu, and T.E. Ficsher, Multimodal Coatings: A New Concept in Thermal Spraying, J. Therm. Spray Technol., 2000, 9(3), p 329-331

    Article  CAS  Google Scholar 

  20. J.A. Gan and C.C. Berndt, Nanocomposite Coatings: Thermal Spray Processing, Microstructure and Performance, Int. Mater. Rev., 2014, 60(4), p 195-244

    Article  CAS  Google Scholar 

  21. R.F. Bunshah, Handbook of Hard Coatings: Deposition Technolgies, Properties and Applications, 1st edn. (William Andrew, 2000)

  22. G. Bolelli, V. Cannillo, L. Lusvarghi, and T. Manfredini, Wear Behaviour of Thermally Sprayed Ceramic Oxide Coatings, Wear, 2006, 261(11), p 1298-1315

    Article  CAS  Google Scholar 

  23. A. Vardelle, Ch Moreau, and N.J. Themelis, A Perspective on Plasma Spray Technology, Plasma Chem. Plasma Process., 2015, 35(3), p 491-509

    Article  CAS  Google Scholar 

  24. A. Cellard, V. Garnier, G. Fantozzi, G. Baret, and P. Fort, Wear Resistance of Chromium Oxide Nanostructured Coatings, Ceram. Int., 2009, 35(2), p 913-916

    Article  CAS  Google Scholar 

  25. P. Ctibor, I. Pıs, J. Kotlan, I. Khalakhan, V. Stengl, and P. Homola, Microstructure and Properties of Plasma-Sprayed Mixture of Cr2O3 and TiO2, J. Therm. Spray Technol., 2013, 22(7), p 1163-1169

    Article  CAS  Google Scholar 

  26. J. Li, Y. Zhang, J. Huang, and C. Ding, Mechanical and Tribological Properties of Plasma-Sprayed Cr3C2-NiCr, WC-Co, and Cr2O3 Coatings, J. Therm. Spray Technol., 1998, 7(2), p 242-246

    Article  CAS  Google Scholar 

  27. M. Szafarska and J. Iwaszko, Laser Remelting Teratment of Plasma-Sprayed Cr2O3 Oxide Coatings, Arch. Metall. Mater., 2012, 57(1), p 215-221

    Article  CAS  Google Scholar 

  28. D.W. Richerson, Modern Ceramic Engineering: Properties, Processing, and Use in Design, 3rd edn. (CRC Press, 2012)

  29. A. Nusair Khan, J. Lu, and H. Lioa, Heat Treatment of Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, 359(1), p 129-136

    Article  CAS  Google Scholar 

  30. S.T. Aruna, N. Balaji, and K.S. Rajam, Phase Transformation and Wear Studies of Plasma Sprayed Yttria Stabilized Zirconia Coatings Containing Various mol% of Yttria, Mater. Charact., 2011, 62(7), p 697-705

    Article  CAS  Google Scholar 

  31. O. Roberts, A.J.G. Lunt, S. Ying, T. Sui, N. Baimpas, I.P. Dolbnya, M. Parkes, D. Dini, S.M. Kreynin, T.K. Neo, and A.M. Korsunsky, A Study of Phase Transformation at the Surface of a Zirconia Ceramic, in: Proc. World Congr. Eng. 2014 Vol 2 (2014, London)

  32. N. Zhang and M.A. Zaeem, Competing Mechanisms between Dislocation and Phase Transformation in Plastic Deformation of Single Crystalline Yttria-Stabilized Tetragonal Zirconia Nanopillars, Acta Mater., 2016, 120, p 337-347

    Article  CAS  Google Scholar 

  33. G. Witz, V. Shklover, W. Steurer, S. Bachegowda, and H.P. Bossmann, Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns, Am. Ceram. Soc., 2007, 90(9), p 2935-2940

    Article  CAS  Google Scholar 

  34. S. Tao, B. Liang, C. Ding, H. Liao, and C. Coddet, Wear Characteristics of Plasma-Sprayed Nanostructured Yttria Partially Stabilized Zirconia Coatings, J. Therm. Spray Technol., 2005, 14(4), p 518-523

    Article  CAS  Google Scholar 

  35. M. Guazzato, M. Albakry, S.P. Ringer, and M.V. Swain, Strength, Fracture Toughness and Microstructure of a Selection of All-ceramic Materials. Part II. Zirconia-based Dental Ceramics, Dental Mater., 2004, 20(5), p 449-456

    Article  CAS  Google Scholar 

  36. A.K. Mishra, Ed., Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications, chap. 2 (Springer International Publishing, 2017)

  37. N. Dejang, A. Limpichaipanit, A. Watcharapasorn, S. Wirojanupatump, P. Niranatlumpong, and S. Jiansirisomboon, Fabrication and Properties of Plasma-Sprayed Al2O3/ZrO2 Composite Coatings, J. Therm. Spray Technol., 2011, 20(6), p 1259-1268

    Article  CAS  Google Scholar 

  38. R. Khanna, J. Ong, E. Oral, and R. Narayan, Progress in Wear Resistant Materials for Total Hip Arthroplasty, Coatings, 2017, 7(7), p 99

    Article  CAS  Google Scholar 

  39. E. Bakan and R. Vaben, Ceramic Top Coats of Plasma-sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26(6), p 992-1010

    Article  CAS  Google Scholar 

  40. S.R. Choi, D. Zhu, and R.A. Miller, Mechanical Properties/Database of Plasma Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings, Appl. Ceram. Technol., 2005, 1(4), p 330-342

    Article  Google Scholar 

  41. J. Zhao, The Use of Ceramic Matrix Composites for Metal Cutting Applications, Advances in Ceramic Matrix Composites (Elsevier, 2014), pp. 623–654

  42. S.Y. Liu, Y. Wang, C. Zhou, and Z.Y. Pan, Mechanical Properties and Tribological Behavior of Alumina/Zirconia Composites Modified with SiC and Plasma Treatment, Wear, 2015, 332–333, p 885-890

    Article  CAS  Google Scholar 

  43. Z.Y. Pan, Y. Wang, X.W. Li, C.H. Wang, and Z.W. Zou, Effect of Submicron and Nano SiC Particles on Erosion Wear and Scratch Behavior of Plasma-Sprayed Al2O3/8YSZ Coatings, J. Therm. Spray Technol., 2012, 21(5), p 995-1010

    Article  CAS  Google Scholar 

  44. J. Lin, Y. Huang, and H. Zhang, Damage Resistance, R-curve Behavior and Toughening Mechanisms of ZrB2-based Composites with SiC Whiskers and ZrO2 Fibers, Ceram. Int., 2015, 41(2), p 2690-2698

    Article  CAS  Google Scholar 

  45. L. Chen, Y. Wang, H. Shen, J. Rao, and Y. Zhou, Effect of SiC Content on Mechanical Properties and Thermal Shock Resistance of BN-ZrO2-SiC composites, Mater. Sci. Eng., A, 2014, 590, p 346-351

    Article  CAS  Google Scholar 

  46. J.O. Berghaus, J.G. Legoux, Ch Moreau, F. Tarasi, and T. Chraska, Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings, J. Therm. Spray Technol., 2008, 17(1), p 91-104

    Article  CAS  Google Scholar 

  47. F.M. Katubilwa and M.H. Moys, Effect of Ball Size Distribution on Milling Rate, Miner. Eng., 2009, 22(15), p 1283-1288

    Article  CAS  Google Scholar 

  48. K.M. Kabezya and H. Motjotji, The Effect of Ball Size Diameter on Milling Performance, J. Mater. Sci. Eng., 2014, 4(1), p 1-3

    Google Scholar 

  49. N. Hlabangana, G. Danha, and E. Muzenda, Effect of Ball and Feed Particle Size Distribution on the Milling Efficiency of a Ball Mill: An Attainable Region Approach, S. Afr. J. Chem. Eng., 2018, 25, p 79-84

    Google Scholar 

  50. H. Ghayour, M. Abdellahi, and M. Bahmanpour, Optimization of the High Energy Ball-milling: Modeling and Parametric Study, Powder Technol., 2016, 291, p 7-13

    Article  CAS  Google Scholar 

  51. M.K. Singla, H. Singh, and V. Chawla, Thermal Sprayed CNT Reinforced Nanocomposite Coatings-A Review, J. Miner. Mater. Charact. Eng., 2011, 10(8), p 717-726

    Google Scholar 

  52. P. Bengtsson and C. Persson, Modelled and Measured Residual Stresses in Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 1997, 92(1–2), p 78-86

    Article  CAS  Google Scholar 

  53. S. Chandra and P. Fauchais, Formation of Solid Splats During Thermal Spray Deposition, J. Therm. Spray Technol., 2009, 18(2), p 148-180

    Article  CAS  Google Scholar 

  54. C. Li, X. Zhang, Y. Chen, J. Carr, S. Jacques, J. Behnsen, M. Di Michiel, P. Xiao, and R. Cernik, Understanding the Residual Stress Distribution Through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) By High Energy Synchrotron Xrd; Digital Image Correlation (DIC) and Image Based Modelling, Acta Mater., 2017, 132, p 1-12

    Article  CAS  Google Scholar 

  55. K. Yang, X. Zhou, C. Liu, S. Tao, and C. Ding, Sliding Wear Performance of Plasma-Sprayed Al2O3-Cr2O3 Composite Coatings Against Graphite under Severe Conditions, J. Therm. Spray Technol., 2013, 22(7), p 1154-1162

    Article  CAS  Google Scholar 

  56. R.C. Tucker, Ed., ASM Handbook, Vol 5A, Thermal Spray Technology, ASM International, Russell, 2013

    Google Scholar 

  57. G.K. Beshish, C.W. Florey, F.J. Worzala, and W.J. Lenling, Fracture Toughness of Thermal Spray Ceramic Coatings Determined by the Indentation Technique, J. Therm. Spray Technol., 1993, 2(1), p 35-38

    Article  CAS  Google Scholar 

  58. A.G. Evans and E.A. Charles, Fracture Toughness Determinations by Indentation, J. Am. Cer. Soc., 1976, 59(7–8), p 371-372

    Article  CAS  Google Scholar 

  59. A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, and M. Nganbe, Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor, J. Mater. Sci. Tech., 2015, 31(8), p 773-783

    Article  Google Scholar 

  60. A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, Determination of Fracture Toughness using the Area of Micro-Crack Tracks Left in Brittle Materials by Vickers Indentation Test, J. Adv. Cer., 2013, 2(1), p 87-102

    Article  CAS  Google Scholar 

  61. G.D. Quinn, Fracture Toughness of Ceramics by the Vickers Indentation Crack Length Method A Critical Review, Ceram. Eng. Sci. Proc., 2007, 27(3), p 45-62

    Google Scholar 

  62. D. Coric, L. Curkovic, and M.M. Renjo, Statistical Analysis of Vickers Indentation Fracture Toughness of Y-TZP Ceramics, Trans. Famena, 2017, 41(2), p 1-16

    Article  Google Scholar 

  63. A.S. Deliormanli and M. Guden, Microhardness and Fracture Toughness of Dental Materials by Indentation Method, J. Biomedical Mater. Res., 2006, 76(2), p 257-264

    Article  CAS  Google Scholar 

  64. Y. Feng and T. Zhang, Determination of Fracture Toughness of Brittle materials by Indentation, Acta Mech. Sol. Sin., 2015, 28(3), p 221-234

    Article  Google Scholar 

  65. K. Tanaka, Elastic-plastic Indentation Hardness and Indentation Fracture Toughness, the Inclusion Core Model, J. Mater. Sci., 1987, 22(4), p 1501-1508

    Article  Google Scholar 

  66. B.R. Lawn and E.R. Fuller, Equilibrium Penny-like Cracks in Indentation Fracture, J. Mater. Sci., 1975, 10(12), p 2016-2024

    Article  CAS  Google Scholar 

  67. A.G. Evans and T.R. Wilshaw, Quasi-Static Solid Particle Damage in Brittle Solids, Observations, Analysis and Implications, Acta Metall., 1976, 24(10), p 939-956

    Article  CAS  Google Scholar 

  68. D.K. Shetty, I.G. Wright, P.N. Mincer, and A.H. Clauer, Indentation Fracture of WC-Co Cermets, J. Mater. Sci., 1985, 20(5), p 1873-1882

    Article  CAS  Google Scholar 

  69. K. Niihara, R. Morena, and D.P.H. Hasselman, Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios, J. Mater. Sci. Let., 1982, 1(1), p 13-16

    Article  CAS  Google Scholar 

  70. P. Zamani and Z. Valefi, Microstructure, Phase Composition and Mechanical Properties of Plasma Sprayed Al2O3, Cr2O3, and Cr2O3-Al2O3 Composite Coatings, Surf. Coat. Technol., 2017, 316, p 138-145

    Article  CAS  Google Scholar 

  71. P. Fauchais, G. Montavon, and G. Bertrand, From Powders to Thermally Sprayed Coatings, J. Therm. Spray Technol., 2010, 19(1–2), p 56-80

    Article  CAS  Google Scholar 

  72. M. Harju, T. Mantyla, K. Vaha-Heikkila, and V.P. Lehto, Water Adsorption on Plasma Sprayed Transition Metal Oxides, Appl. Surf. Sci., 2005, 249(1-4), p 115-126

    Article  CAS  Google Scholar 

  73. M. Toozandehjani, K.A. Matori, F. Ostovan, S. Abdul Aziz, and M.S. Mamat, Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy, Materials (Basel), 2017, 10(11), p 1-17

    Article  CAS  Google Scholar 

  74. J.B. Rao, G.J. Catherin, I.N. Murthy, D.V. Rao, and B.N. Raju, Production of Nano Structured Silicon Carbide by High Energy Ball Milling, Int. J. Eng. Sci. Technol., 2011, 3(4), p 82-88

    Article  Google Scholar 

  75. G. Rajender and P.K. Giri, Strain Induced Phase Formation, Microstructural Evolution and Bandgap Narrowing in Strained TiO2 Nanocrystals Grown by Ball Milling, J. Alloys Comp., 2016, 676, p 591-600

    Article  CAS  Google Scholar 

  76. C.P. Gazzara, The Measurement of Residual Stress with x-ray Diffraction (Army materials and mechanics research center, 1983)

  77. A. Bahera and S.C. Mishra, Prediction and Analysis of Deposition Efficiency of Plasma Spray Coating using Artificial Intelligence Method, Compos. Mater., 2012, 2(2), p 54-60

    Google Scholar 

  78. V.P. Singh, A. Sil, and R. Jayaganthan, Wear of Plasma Sprayed Conventional and Nanostructured Al2O3 and Cr2O3, Based Coatings, Trans. Indian Inst. Met., 2012, 65(1), p 1-12

    Article  CAS  Google Scholar 

  79. D.G. Goberman, Microstructure Investigation of Plasma Sprayed Alumina 13 Weight Percent Titania Coatings from Nanocrystalline Feed Powders, Ph.D. Thesis, University of Connecticut, 2002

  80. F. Onoue and K. Tsuji, X-Ray Elemental Imaging in Depth by Combination of FE-SEM-EDS and Glow Discharge Sputtering, ISIJ Int., 2013, 53(11), p 1939-1942

    Article  CAS  Google Scholar 

  81. W. Chi, S. Sampath, and H. Wang, Ambient and High-temperature Thermal Conductivity of Thermal Sprayed Coatings, J. Therm. Spray Technol., 2006, 15(4), p 773-778

    Article  CAS  Google Scholar 

  82. K.W. Schlichting, N.P. Padture, and P.G. Klemens, Thermal Conductivity of Dense and Porous Yttria-stabilized Zirconia, Mater. Sci., 2001, 36(12), p 3003-3010

    Article  CAS  Google Scholar 

  83. E.M. Garcia, Optimizing the Sintering of Cr 2 O 3-nano Powders for HVOF Applications, M.Sc. Thesis, the University Carlos III of Madrid, 2012

  84. R.G. Munro, Material Properties of a Sintered α-SiC, Phys. Chem. Ref. Data., 2009, 26(5), p 1195-1205

    Article  Google Scholar 

  85. J. Zhang and V. Desai, Evaluation of Thickness, Porosity and Pore Shape of Plasma Sprayed TBC by Electrochemical Impedance Spectroscopy, Surf. Coatings Technol., 2005, 190(1), p 98-109

    Article  CAS  Google Scholar 

  86. C.B. Ponton and R.D. Rawlings, Vickers Indentation Fracture Toughness Test Part 1 Review of Literature and Formulation of Standardised Indentation Toughness Equations, Mater. Sci. Tech., 1989, 5(9), p 865-872

    Article  Google Scholar 

  87. T.A. Fabijanic, D. Coric, M.S. Musa, and M. Sakoman, Vickers Indentation Fracture Toughness of Near-Nano and Nanostructured WC-Co Cemented Carbides, Metals, 2017, 7, p 143-159

    Article  CAS  Google Scholar 

  88. M. Kutz, Handbook of Materials Selection, Wiley, NY, 2002

    Book  Google Scholar 

  89. A.G. Gogotsi, Fracture Toughness of Ceramics and Ceramic Composites, Ceram. Int., 2003, 29, p 777-784

    Article  CAS  Google Scholar 

  90. Y. Takano, T. Komeda, M. Yoshinaka, K. Hirota, and O. Yamaguchi, Fabrication, Microstructure, and Mechanical Properties of Cr2O3/ZrO2(2.5Y) Composite Ceramics in the Cr2O3-Rich Region, Am. Ceram. Soc., 1998, 81, p 2497-2500

    Article  CAS  Google Scholar 

  91. R.C. Bradt, D.P.H. Hasselman, and D. Munz, Fracture Mechanics of Ceramics, Vol 12, Composites, and High Temperature Behavior, Springer Science + Business Media New York, Fatigue, 1996

    Book  Google Scholar 

  92. R.W. Rice, Grain Size and Porosity Dependence of Ceramic Fracture Energy and Toughness at 22 °C, J. Mater. Sci., 1996, 31(8), p 1969-1983

    Article  CAS  Google Scholar 

  93. D.L. Zhang, J. Liang, and J. Wu, Processing Ti3Al-SiC Nanocomposites using High Energy Mechanical Milling, Mater. Sci. Eng., A, 2004, 375–377, p 911-916

    Article  CAS  Google Scholar 

  94. R. Gadow, M.J. Riegert-Escribano, and M. Buchmann, Residual Stress Analysis in Thermally Sprayed Layer Composites, Using the Hole Milling and Drilling Method, J. Therm. Spray Technol., 2005, 14, p 100-108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Parvin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, S.M., Parvin, N. & Valefi, Z. Effect of Addition of Multimodal YSZ and SiC Powders on the Mechanical Properties of Nanostructured Cr2O3 Plasma-Sprayed Coatings. J Therm Spray Tech 28, 544–562 (2019). https://doi.org/10.1007/s11666-019-00834-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00834-8

Keywords

Navigation