Skip to main content

Biomaterials: Thermal Spray Processes and Applications

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Evaluatemedtech® World Preview 2016, Outlook to 2022 Executive Summary. London, United Kingdom, 2016

  2. 2.

    C.M.D. LLC, Un-Ignorable: China’s Orthopedic Implant Industry, 2018

  3. 3.

    R. Florencio-Silva, G.R.D.S. Sasso, E. Sasso-Cerri, M.J. Simões, and P.S. Cerri, Biology of Bone Tissue: Structure, Function, and Factors that Influence Bone Cells, Biomed. Res. Int., 2015, 21, p 15-50. https://doi.org/10.1155/2015/421746

    CAS  Article  Google Scholar 

  4. 4.

    E. Gentleman, Y.C. Fredholm, G. Jell, N. Lotfibakhshaiesh, M.D. O’Donnell, R.G. Hill, and M.M. Stevens, The Effects of Strontium-Substituted Bioactive Glasses on Osteoblasts and Osteoclasts in Vitro, Biomaterials, 2010, 31(14), p 3949-3956. https://doi.org/10.1016/j.biomaterials.2010.01.121

    CAS  Article  Google Scholar 

  5. 5.

    S. Pors-Nielsen, The Biological Role of Strontium, Bone, 2004, 35(3), p 583-588. https://doi.org/10.1016/j.bone.2004.04.026

    CAS  Article  Google Scholar 

  6. 6.

    H. Zreiqat, Y. Ramaswamy, C. Wu, A. Paschalidis, Z. Lu, B. James, O. Birke, M. McDonald, D. Little, and C.R. Dunstan, The Incorporation of Strontium and Zinc into a Calcium–Silicon Ceramic for Bone Tissue Engineering, Biomaterials, 2010, 31(12), p 3175-3184. https://doi.org/10.1016/j.biomaterials.2010.01.024

    CAS  Article  Google Scholar 

  7. 7.

    H. Zreiqat, C. Wu, and C. Dunstan, Biocompatible Material and Uses Thereof. Washington, D.C. Patent No. U.S. Patent No. US8765163B2.: U. S. P. a. T. Office, 2014.

  8. 8.

    B.M. Hidalgo-Robatto, J.J. Aguilera-Correa, M. López-Álvarez, D. Romera, J. Esteban, P. González, and J. Serra, Fluor-Carbonated Hydroxyapatite Coatings by Pulsed Laser Deposition to Promote Cell Viability and Antibacterial Properties, Surf. Coat. Technol., 2018, 349, p 736-744. https://doi.org/10.1016/j.surfcoat.2018.06.047

    CAS  Article  Google Scholar 

  9. 9.

    R.R. Behera, A. Das, D. Pamu, L.M. Pandey, and M.R. Sankar, Mechano-Tribological Properties and in Vitro Bioactivity of Biphasic Calcium Phosphate Coating on Ti–6al–4v, J. Mech. Behav. Biomed. Mater., 2018, 86, p 143-157. https://doi.org/10.1016/j.jmbbm.2018.06.020

    CAS  Article  Google Scholar 

  10. 10.

    C. Wu, Y. Ramaswamy, D. Gale, W. Yang, K. Xiao, L. Zhang, Y. Yin, and H. Zreiqat, Novel Sphene Coatings on Ti–6al–4v for Orthopedic Implants Using Sol–Gel Method, Acta Biomater., 2008, 4(3), p 569-576. https://doi.org/10.1016/j.actbio.2007.11.005

    CAS  Article  Google Scholar 

  11. 11.

    T.N. Kim, Q.L. Feng, Z.S. Luo, F.Z. Cui, and J.O. Kim, Highly Adhesive Hydroxyapatite Coatings on Alumina Substrates Prepared by Ion-Beam Assisted Deposition, Surf. Coat. Technol., 1998, 99(1), p 20-23. https://doi.org/10.1016/S0257-8972(97)00121-7

    CAS  Article  Google Scholar 

  12. 12.

    X. Ye, S. Cai, Y. Dou, G. Xu, K. Huang, M. Ren, and X. Wang, Bioactive Glass-Ceramic Coating for Enhancing the in Vitro Corrosion Resistance of Biodegradable Mg Alloy, Appl. Surf. Sci., 2012, 259, p 799-805. https://doi.org/10.1016/j.apsusc.2012.07.127

    CAS  Article  Google Scholar 

  13. 13.

    R.R. Wang, G.E. Welsch, and O. Monteiro, Silicon Nitride Coating on Titanium to Enable Titanium–Ceramic Bonding, J. Biomed. Mater. Res., 1999, 46(2), p 262-270. https://doi.org/10.1002/(sici)1097-4636(199908)46:2<262::aid-jbm16>3.0.co;2-1

    CAS  Article  Google Scholar 

  14. 14.

    E. Salahinejad and R. Vahedifard, Deposition of Nanodiopside Coatings on Metallic Biomaterials to Stimulate Apatite-Forming Ability, Mater. Des., 2017, 123, p 120-127. https://doi.org/10.1016/j.matdes.2017.03.047

    CAS  Article  Google Scholar 

  15. 15.

    V.K. Balla, W. Xue, S. Bose, and A. Bandyopadhyay, Laser-Assisted Zr/Zro2 Coating on Ti for Load-Bearing Implants, Acta Biomater., 2009, 5(7), p 2800-2809. https://doi.org/10.1016/j.actbio.2009.03.032

    CAS  Article  Google Scholar 

  16. 16.

    H.-W. Kim, H.-E. Kim, and J.C. Knowles, Fluor-Hydroxyapatite Sol–Gel Coating on Titanium Substrate for Hard Tissue Implants, Biomaterials, 2004, 25(17), p 3351-3358. https://doi.org/10.1016/j.biomaterials.2003.09.104

    CAS  Article  Google Scholar 

  17. 17.

    D. Qiu, A. Wang, and Y. Yin, Characterization and Corrosion Behavior of Hydroxyapatite/Zirconia Composite Coating on Niti Fabricated by Electrochemical Deposition, Appl. Surf. Sci., 2010, 257(5), p 1774-1778. https://doi.org/10.1016/j.apsusc.2010.09.014

    CAS  Article  Google Scholar 

  18. 18.

    C.T. Kwok, P.K. Wong, F.T. Cheng, and H.C. Man, Characterization and Corrosion Behavior of Hydroxyapatite Coatings on Ti–6al–4v Fabricated by Electrophoretic Deposition, Appl. Surf. Sci., 2009, 255(13), p 6736-6744. https://doi.org/10.1016/j.apsusc.2009.02.086

    CAS  Article  Google Scholar 

  19. 19.

    H.R. Bakhsheshi-Rad, E. Hamzah, A.F. Ismail, M. Aziz, M. Kasiri-Asgarani, E. Akbari, S. Jabbarzare, A. Najafinezhad, and Z. Hadisi, Synthesis of a Novel Nanostructured Zinc Oxide/Baghdadite Coating on Mg Alloy for Biomedical Application: In-Vitro Degradation Behavior and Antibacterial Activities, Ceram. Int., 2017, 43(17), p 14842-14850. https://doi.org/10.1016/j.ceramint.2017.07.233

    CAS  Article  Google Scholar 

  20. 20.

    G. Bolelli, N. Stiegler, D. Bellucci, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, and A. Sola, Deposition Mechanisms in High Velocity Suspension Spraying: Case Study for Two Bioactive Materials, Surf. Coat. Technol., 2012, 210, p 28-45. https://doi.org/10.1016/j.surfcoat.2012.08.046

    CAS  Article  Google Scholar 

  21. 21.

    P. Krieg, A. Killinger, R. Gadow, S. Burtscher, and A. Bernstein, High Velocity Suspension Flame Spraying (Hvsfs) of Metal Doped Bioceramic Coatings, Bioactive Materials, 2017, 2(3), p 162-169. https://doi.org/10.1016/j.bioactmat.2017.04.006

    CAS  Article  Google Scholar 

  22. 22.

    H. Farnoush, F. Muhaffel, and H. Cimenoglu, Fabrication and Characterization of Nano-Ha-45s5 Bioglass Composite Coatings on Calcium-Phosphate Containing Micro-Arc Oxidized Cp-Ti Substrates, Appl. Surf. Sci., 2015, 324, p 765-774. https://doi.org/10.1016/j.apsusc.2014.11.032

    CAS  Article  Google Scholar 

  23. 23.

    W. Zhang, G. Wang, Y. Liu, X. Zhao, D. Zou, C. Zhu, Y. Jin, Q. Huang, J. Sun, X. Liu, X. Jiang, and H. Zreiqat, The Synergistic Effect of Hierarchical Micro/Nano-Topography and Bioactive Ions for Enhanced Osseointegration, Biomaterials, 2013, 34(13), p 3184-3195. https://doi.org/10.1016/j.biomaterials.2013.01.008

    CAS  Article  Google Scholar 

  24. 24.

    G. Bolelli, D. Bellucci, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, P. Müller, and A. Sola, Comparison between Suspension Plasma Sprayed and High Velocity Suspension Flame Sprayed Bioactive Coatings, Surf. Coat. Technol., 2015, 280, p 232-249. https://doi.org/10.1016/j.surfcoat.2015.08.039

    CAS  Article  Google Scholar 

  25. 25.

    G. Bolelli, D. Bellucci, V. Cannillo, L. Lusvarghi, A. Sola, N. Stiegler, P. Müller, A. Killinger, R. Gadow, L. Altomare, and L. De Nardo, Suspension Thermal Spraying of Hydroxyapatite: Microstructure and in Vitro Behaviour, Mater. Sci. Eng., C, 2014, 34, p 287-303. https://doi.org/10.1016/j.msec.2013.09.017

    CAS  Article  Google Scholar 

  26. 26.

    A. Fomin, M. Fomina, V. Koshuro, I. Rodionov, A. Zakharevich, and A. Skaptsov, Structure and Mechanical Properties of Hydroxyapatite Coatings Produced on Titanium Using Plasma Spraying with Induction Preheating, Ceram. Int., 2017, 43(14), p 11189-11196. https://doi.org/10.1016/j.ceramint.2017.05.168

    CAS  Article  Google Scholar 

  27. 27.

    F. Baino and C. Vitale-Brovarone, Feasibility of Glass-Ceramic Coatings On Alumina Prosthetic Implants By Airbrush Spraying Method, Ceramics International Part A, 2015, 41(2), p 2150-2159. https://doi.org/10.1016/j.ceramint.2014.10.015

    CAS  Article  Google Scholar 

  28. 28.

    L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res., 2001, 58(5), p 570-592. https://doi.org/10.1002/jbm.1056

    CAS  Article  Google Scholar 

  29. 29.

    G. Zhao, L. Xia, B. Zhong, G. Wen, L. Song, and X. Wang, Effect of Milling Conditions on the Properties of Ha/Ti Feedstock Powders and Plasma-Sprayed Coatings, Surf. Coat. Technol., 2014, 251, p 38-47. https://doi.org/10.1016/j.surfcoat.2014.02.028

    CAS  Article  Google Scholar 

  30. 30.

    R.S. Pillai, M. Frasnelli, and V.M. Sglavo, Ha/Β-Tcp Plasma Sprayed Coatings on Ti Substrate for Biomedical Applications, Ceram. Int., 2018, 44(2), p 1328-1333. https://doi.org/10.1016/j.ceramint.2017.08.113

    CAS  Article  Google Scholar 

  31. 31.

    E. Garcia, P. Miranzo, and M.A. Sainz, Thermally Sprayed Wollastonite and Wollastonite-Diopside Compositions as New Modulated Bioactive Coatings for Metal Implants, Ceram. Int., 2018, 44(11), p 12896-12904. https://doi.org/10.1016/j.ceramint.2018.04.100

    CAS  Article  Google Scholar 

  32. 32.

    Y. Liang, Y. Xie, H. Ji, L. Huang, and X. Zheng, Excellent Stability of Plasma-Sprayed Bioactive Ca3zrsi2o9 Ceramic Coating on Ti–6al–4v, Appl. Surf. Sci., 2010, 256(14), p 4677-4681. https://doi.org/10.1016/j.apsusc.2010.02.071

    CAS  Article  Google Scholar 

  33. 33.

    W. Xue, X. Liu, X. Zheng, and C. Ding, Plasma-Sprayed Diopside Coatings for Biomedical Applications, Surf. Coat. Technol., 2004, 185(2), p 340-345. https://doi.org/10.1016/j.surfcoat.2003.12.018

    CAS  Article  Google Scholar 

  34. 34.

    M. Razavi, M. Fathi, O. Savabi, B.H. Beni, S.M. Razavi, D. Vashaee, and L. Tayebi, Coating of Biodegradable Magnesium Alloy Bone Implants Using Nanostructured Diopside (Camgsi2o6), Appl. Surf. Sci., 2014, 288, p 130-137. https://doi.org/10.1016/j.apsusc.2013.09.160

    CAS  Article  Google Scholar 

  35. 35.

    X. Liu, S. Tao, and C. Ding, Bioactivity of Plasma Sprayed Dicalcium Silicate Coatings, Biomaterials, 2002, 23(3), p 963-968. https://doi.org/10.1016/S0142-9612(01)00210-1

    CAS  Article  Google Scholar 

  36. 36.

    A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440. https://doi.org/10.1007/s11666-016-0473-x

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Co-editors Christopher Berndt and Andrew S.M. Ang acknowledge support from the Australian Research Council (ARC) Centre for Innovative BioEngineering that is based at the University of Sydney, Australia, under Director Prof. Hala Zreiqat. This Centre has been funded under the Industrial Transformation Training Centre (ITTC) scheme. The co-editors thank the authors for their splendid contributions that make this Special Issue “quite special.”

Dedication

Co-editors Christopher Berndt and Andrew S.M. Ang, with the agreement of co-editor Rehan Ahmed and close colleague Prof. Michael Khor (Nanyang Technological University, Singapore), dedicate this JTST Special Issue to Prof. Philip Hong Ning Cheang. Professor Cheang (aka ‘Doc Phil’) graduated from Monash University in 1989 with his PhD thesis titled, “The microstructural and mechanical properties of plasma sprayed coatings.” He passed away on May 15, 2018 from natural causes at the age of 58; far too young. Doc Phil formed a dominant academic and collegial partnership with Prof. Khor at NTU for several decades; the outcomes of which continue to this day with a cadre of former students, including Dr. Ang, who now have good careers in their chosen fields. Together they changed forever the landscape of thermal spray, biomaterials, and cold spray in Singapore with global impacts. Doc Phil grew from being my student, to a colleague, to a mentor and leader in his own right. We are certain that Doc. Phil would smile when we say, “May he rest in peace.”

Guest Editors

Andrew Ang, PhD

Swinburne University of Technology, Australia

Rehan Ahmed, PhD

Herriot Watt University, UK

Christopher C. Berndt, PhD, Deng

Swinburne University of Technology, Australia

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biomaterials: Thermal Spray Processes and Applications. J Therm Spray Tech 27, 1205–1211 (2018). https://doi.org/10.1007/s11666-018-0808-x

Download citation