M. Navarro, A. Michiardi, O. Castaño, and J.A. Planell, Biomaterials in Orthopaedics, J. R. Soc. Interface, 2008, 5(27), p 1137-1158
CAS
Article
Google Scholar
H.F. Hildebrand, N. Blanchemain, G. Mayer, F. Chai, M. Lefebvre, and F. Boschin, Surface Coatings for Biological Activation and Functionalization of Medical Devices, Surf. Coat. Technol., 2006, 200, p 6318-6324
CAS
Article
Google Scholar
D.W. Zhao, F. Witte, F.Q. Lu, J.L. Wang, J.L. Li, and L. Qin, Current Status on Clinical Application of Magnesium-Based Orthopedic Implants: A Review from Clinical Translational Perspective, Biomaterials, 2016, 112, p 287-302
Article
CAS
Google Scholar
J.D. Pasteris, A Mineralogical View of Apatite Biomaterials, Am. Mineral., 2016, 101(12), p 2594-2610
Article
Google Scholar
C. Rey, C. Combes, C. Drouet, and M.J. Glimcher, Bone Mineral: Update on Chemical Composition and Structure, Osteoporosis Int., 2009, 20(6), p 1013-1021
CAS
Article
Google Scholar
R.M. Wilson, J.C. Elliot, S.E.P. Dowker, and L.M. Rodriguez-Lorenzo, Rietveld Refinements and Spectroscopic Studies of the Structure of Ca-Deficient Apatite, Biomaterials, 2005, 26(11), p 1317-1327
CAS
Article
Google Scholar
J.D. Pasteris, B. Wopenka, and E. Valsami-Jones, Bone and Tooth Mineralization: Why Apatite? Elements, 2008, 4, p 97-104
CAS
Article
Google Scholar
R.B. Heimann, Ed., Calcium Phosphate. Structure, Synthesis, Properties, and Applications, Nova Science Publishers Inc., New York, 2012, ISBN 978-1-62257-299-1
Google Scholar
N. Groen, M. Guvendiren, H. Rabitz, W.J. Welsh, J. Kohn, and J. de Boer, Stepping into the Omics Era: Opportunities and Challenges for Biomaterials Science, Acta Biomater., 2016, 34, p 133-142
CAS
Article
Google Scholar
R.A. Surmenev, M.A. Surmeneva, and A.A. Ivanova, Significance of Calcium Phosphate Coatings for the Enhancement of New Bone Osteogenesis—A Review, Acta Biomater., 2014, 10, p 557-570
CAS
Article
Google Scholar
A.H. Choi, B. Ben-Nissan, J.P. Matinlinna, and R.C. Conway, Current Perspectives: Calcium Phosphate Nanocoatings and Nanocomposite Coatings in Dentistry, J. Dent. Res., 2013, 92(10), p 853-859
CAS
Article
Google Scholar
M. Farrokhi-Rad, T. Shahrabi, S. Mahmoodi, and S. Khanmohammadi, Electrophoretic Deposition of Hydroxyapatite-Chitosan-CNTs Nanocomposite Coatings, Ceram. Int., 2017, 43(5), p 4663-4669
CAS
Article
Google Scholar
S.H. Teng, E.J. Lee, C.S. Park, W.Y. Choi, D.S. Shi, and H.E. Kim, Bioactive Nanocomposite Coatings of Collagen/Hydroxyapatite on Titanium Substrates, J. Mater. Sci. Mater. Med., 2008, 19(6), p 2453-2461
CAS
Article
Google Scholar
MedGadget, Worldwide Hip and Knee Orthopedic Surgical Implant Market Shares, Trend, Growth, Strategy and Forecast 2016 to 2022. www.medgadget.com. Accessed 13 March 2018
R.B. Heimann and H.D. Lehmann, Bioceramic Coatings for Medical Implants, Wiley-VCH, Weinheim, 2015, ISBN 978-3-527-33743-9
Book
Google Scholar
B. León and J.A. Jansen, Thin Calcium Phosphate Coatings for Medical Implants, Springer, New York, 2009, ISBN 978-0-387-77718-4
Book
Google Scholar
R.B. Heimann, Classic and Advanced Ceramics. From Fundamentals to Applications, Wiley-VCH, Weinheim, 2010, ISBN 978-3-527-32517-7
Book
Google Scholar
R.B. Heimann, Structure, Properties, and Biomedical Performance of Osteoconductive Bioceramic Coatings, Surf. Coat. Technol., 2013, 233, p 27-38
CAS
Article
Google Scholar
R.B. Heimann, Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties, J. Thermal Spray Technol., 2016, 25(5), p 827-850
CAS
Article
Google Scholar
R.B. Heimann, Osseoconductive and Corrosion-Inhibiting Plasma-Sprayed Hydroxylapatite Coatings for Metallic Medical Implants, Metals, 2017, 7(11), p 468-487
Article
CAS
Google Scholar
K. De Groot, R. Geesink, C.P.A.T. Klein, and P. Serekian, Plasma-Sprayed Coatings of Hydroxyapatite, J. Biomed. Mater. Res., 1987, 21, p 1375-1381
Article
Google Scholar
R. McPherson, N. Gane, and T.J. Bastow, Structural Characterization of Plasma-Sprayed Hydroxylapatite Coatings, J. Mater. Sci. Mater. Med., 1995, 6, p 327-334
CAS
Article
Google Scholar
K.A. Gross and C.C. Berndt, Thermal Processing of Hydroxyapatite for Coating Production, J. Biomed. Mater. Res., 1998, 39(4), p 580-587
CAS
Article
Google Scholar
P. Cheang and K.A. Khor, Influence of Powder Characteristics on Plasma-Sprayed Hydroxyapatite Coatings, J. Thermal Spray Technol., 1996, 5(3), p 310-316
CAS
Article
Google Scholar
S.J. Ding, C.P. Ju, and J.H. Lin, Morphology and Immersion Behavior of Plasma-Sprayed Hydroxyapatite/Bioactive Glass Coatings, J. Mater. Sci. Mater. Med., 2000, 11(3), p 183-190
CAS
Article
Google Scholar
R.B. Heimann, Plasma Spray Coating. Principles and Applications, 2nd ed., Wiley-VCH, Weinheim, 2008, ISBN 978-3-527-32050-9
Google Scholar
J.C. Heughebaert and G. Montel, Conversion of Amorphous Tricalcium Phosphate into Apatitic Tricalcium Phosphate, Calcif. Tissue Int., 1982, 34, p S103-S108
Article
Google Scholar
C. Combes and C. Rey, Amorphous Calcium Phosphates: Synthesis, Properties and Uses in Biomaterials, Acta Biomater., 2010, 6(9), p 3362-3378
CAS
Article
Google Scholar
J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, and H. Herman, Preparation of Nanophase Materials by Thermal Spray Processing of Liquid Precursors, Nanostruct. Mater., 1997, 9(1-8), p 137-140
CAS
Article
Google Scholar
K.A. Gross and S. Saber-Samandari, Revealing Mechanical Properties of a Suspension Plasma Sprayed Coating with Nanoindentation, Surf. Coat. Technol., 2009, 203, p 2995-2999
CAS
Article
Google Scholar
R. Jaworski, L. Pawłowski, C. Pierlot, F. Roudet, S. Kozerski, and F. Petit, Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings, J. Thermal Spray Technol., 2010, 19(1-2), p 240-247
CAS
Article
Google Scholar
T.J. Callahan and J.B. Gantenberg, Sands BE (1994) Calcium Phosphate (Ca-P) Coating Draft Guidance for Preparation of Food and Drug Administration (FDA) Submissions for Orthopedic and Dental Endosseous Implants, Characterization and Performance of Calcium Phosphate Coatings for Implants, E. Horowitz and J.E. Parr, Ed., ASTM STP 1196, Philadelphia, PA, 1994, p 185-197
Chapter
Google Scholar
E. Wintermantel and S.W. Ha, Biokompatible Werkstoffe und Bauweisen. Implantate für Medizin und Umwelt [Biocompatible Materials and Design. Implants for Medicine and Environment], Springer, Berlin, 1996
ISO 13779-2, Implants for Surgery-Hydroxyapatite. Part 2: Coatings of Hydroxylapatite (International Organization for Standardization, Geneva, 2008)
S. Peroos, Z. Du, and N.H. de Leeuw, A Computer Modelling Study of the Uptake, Structure and Distribution of Carbonate Defects in Hydroxyapatite, Biomaterials, 2006, 27(9), p 2150-2161
CAS
Article
Google Scholar
J.D. Pasteris, C.H. Yoder, and B. Wopenka, Molecular Water in Nominally Anhydrous Carbonated Hydroxylapatite: The Key to a Better Understanding of Bone Mineral, Am. Mineral., 2014, 99, p 16-27
CAS
Article
Google Scholar
C. Liu, Y. Huang, W. Shen, and J. Cui, Kinetics of Hydroxyapatite Precipitation at pH 10 and 11, Biomaterials, 2001, 22, p 301-306
CAS
Article
Google Scholar
FDA, Guidance for Industry and FDA Staff—Class II Special Controls Guidance Document: Root-form Endosseous Dental Implants and Endosseous Dental Abutments (U.S. Dept. of Health and Human Services, Silver Spring, MD, 2004)
FDA, Guidance for Industry and FDA Staff—Non-clinical Information for Femoral Stem Prostheses (U.S. Dept. of Health and Human Services, Silver Spring, MD, 2007)
F. Fazan and P.M. Marquis, Dissolution Behavior of Plasma-Sprayed Hydroxyapatite Coatings, J. Mater. Sci. Mater. Med., 2000, 11, p 787-792
CAS
Article
Google Scholar
R.B. Heimann, Thermal Spraying of Biomaterials, Surf. Coat. Technol., 2006, 201, p 2012-2019
CAS
Article
Google Scholar
A. Herrera, J. Mateo, J. Gil-Albarova, A. Lobo Escolar, E. Ibarz, S. Gabarre, Y. Más, and L. Gracia, Cementless Hydroxyapatite Coated Hip Prostheses. BioMed. Res. Int., 2015, 2015, Art. ID 386461
Y.L. Chen, T. Lin, A. Liu, M.M. Shi, B. Hu, Z.L. Shi, and S.G. Yan, Does Hydroxyapatite Coating Have No Advantage Over Porous Coating in Primary Total Hip Arthroplasty? A Meta-Analysis, J. Orthop. Surg. Res., 2015, 10, p 21
Article
Google Scholar
W.H. Harris, Traumatic Arthritis of the Hip After Dislocation and Acetabular Fractures: Treatment by Mold Arthroplasty. An End-Result Study Using a New Method of Result Evaluation, J. Bone Surg. Am., 1969, 51(4), p 735-755
Article
Google Scholar
W.M. Capello, J.A. d’Antonio, M.T. Manley, and J.R. Feinberg, Hydroxyapatite in Total Hip Arthroplasty, Clinical Results and Critical Issues, Clin. Orthop. Rel. Res., 1998, 355, p 200-211
Article
Google Scholar
L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res., 2001, 58, p 570-592
CAS
Article
Google Scholar
J.A. Epinette and M.T. Manley, Ed., Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty, Springer, Paris, 2004, ISBN 978-2-8178-0851-2
Google Scholar
A.V. Lombardi, K.R. Berend, and T.H. Mallory, Hydroxyapatite-Coated Titanium Porous Plasma Spray Tapered Stem: Experience at 15 to 18 years, Clin. Orthop. Rel. Res., 2006, 453, p 81-85
Article
Google Scholar
R. Gandhi, J.R. Davey, and N.N. Mahomed, Hydroxyapatite Coated Femoral Stems in Primary Total Hip Arthroplasty; A Meta-Analysis, J. Arthroplasty, 2009, 24(1), p 38-42
Article
Google Scholar
A. Herrera, J. Mateo, A. Lobo-Escolar, J.J. Panicello, E. Ibarz, and L. Gracia, Long-Term Outcomes of a New Model of Anatomical Hydroxyapatite-Coated Hip Prostheses, J. Arthroplasty, 2013, 28(7), p 1160-1166
Article
Google Scholar
H.S. Kim, P.Y. Yun, and Y.K. Kim, Randomized Controlled Clinical Trial of 2 types of Hydroxyapatite-Coated Implants on Moderate Periodontitis Patients, J. Periodontal Implant Sci., 2016, 46(5), p 337-349
Article
Google Scholar
I. Castellini, L. Andreani, P.D. Parchi, E. Bonicoli, N. Piolanti, F. Risoli, and M. Lisanti, Hydroxyapatite in Total Hip Arthroplasty. Our Experience with a Plasma Spray Porous Titanium Alloy(Hydroxyapatite Double-Coated Cementless Stem, Clin. Cases Miner. Bone Metab., 2016, 13(3), p 221-227
Google Scholar
T. Albrektsson, Hydroxyapatite-Coated Implants: A Case Against Their Use, J. Oral Maxillofac. Surg., 1998, 56(11), p 1312-1326
CAS
Article
Google Scholar
Y.H. Kim, J.S. Kim, J.H. Joo, and J.W. Park, Is Hydroxyapatite Coating Necessary to Improve Survivorship of Porous-Coated Titanium Femoral Stem? J. Arthroplasty, 2012, 27(4), p 559-563
Article
Google Scholar
R.B. Heimann, Better Quality Control: Stochastic Approaches to Optimize Properties and Performance of Plasma-Sprayed Coatings, J. Thermal Spray Technol., 2010, 19(4), p 765-778
CAS
Article
Google Scholar
ASTM F1185–03, Standard Specification for Composition of Hydroxyapatite for Surgical Implants, ASTM International, West Conshohocken, PA, 2009, https://doi.org/10.1520/f1185-03r09
Book
Google Scholar
ISO 13485, Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes, International Organization for Standardization, Geneva, 2003
B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, Ed., Biomaterials Science. An Introduction to Materials in Medicine, 3rd ed., Elsevier, Amsterdam, 2013, ISBN 978-0-12-374626-9
Google Scholar
P. Itiravivong, A. Promasa, T. Laiprasert, T. Techapongworachai, S. Kuptniratsaikul, V. Thanakit, and R.B. Heimann, Comparison of Tissue Reaction and Osteointegration of Metal Implants Between Hydroxyapatite/Ti Alloy Coat: An Animal Experimental Study, J. Med. Assoc. Thailand, 2003, 86(2), p S422-S430
Google Scholar
S. Mann, Biomineralization. Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press, Oxford, 2001, ISBN 978-0-1985-0882-3
Google Scholar
H.A. Lowenstam and S. Weiner, On Biomineralization, Oxford University Press, New York, 1989, ISBN 978-0-1950-4977-0
Google Scholar
R.O. Hynes, Integrins: Versatility, Modulation, and Signaling in Cell Adhesion, Cell, 1992, 69(1), p 11-25
CAS
Article
Google Scholar
P. Mandracci, F. Mossano, P. Rivolo, and S. Carossa, Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology, Coatings, 2016, 6(1), p 7. https://doi.org/10.3390/coatings6010007
CAS
Article
Google Scholar
S.I. Stupp and P.V. Braun, Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductors, Science, 1997, 277, p 1242-1248
CAS
Article
Google Scholar
H.H. Pan, J.H. Tao, X.R. Xu, and R.K. Tang, Adsorption Processes of Gly and Glu Amino Acids on Hydroxyapatite Surfaces at the Atomic Level, Langmuir, 2007, 23(17), p 8972-8981
CAS
Article
Google Scholar
K. Kandohiro, R. Murata, Y. Yamaguchi, and A. Yoshioka, Protein Adsorption Behavior onto Mn(II)-Doped Calcium Hydroxyapatite Particles with Different Morphologies, Colloids Surf. B: Biointerfaces, 2018, 167, p 36-43
Article
CAS
Google Scholar
O. Rahbek, S. Overgaard, M. Lind, K. Bendix, C. Buenger, and K. Søballe, Sealing Effect of Hydroxyapatite Coating on Peri-implant Migration of Particles, J. Bone Joint Surg., 2001, 83, p 441-448
CAS
Article
Google Scholar
K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, Precipitation Kinetics of Hydroxyapatite Revealed by the Continuous-Angle Laser Light-Scattering Technique, J. Phys. Chem. B, 2000, 104, p 11950-11956
CAS
Article
Google Scholar
P.F. Schofield, E. Valsami-Jones, I.R. Sneddon, J. Wilson, C.A. Kirk, N.J. Terrill, C.M. Martin, D. Lammie, and T.J. Wess, Nucleation and Growth of Nano-apatite: Applications to Biomineralisation, Geochim. Cosmochim. Acta, 2005, 69(10), p A72-A72 ((Suppl. S.))
Google Scholar
Q.Q. Hoang, F. Siceri, A.J. Howard, and D.S.C. Yang, Bone Recognition Mechanism of Porcine Osteocalcin from Crystal Structure, Nature, 2003, 425, p 977-980
CAS
Article
Google Scholar
H.C. Anderson, Vesicles Associated with Calcification in the Matrix of Epiphyseal Cartilage, J. Cell Biol., 1969, 41, p 59-72
CAS
Article
Google Scholar
A.L. Boskey and B.L. Dick, The Effect of Phosphatidylserine on In Vivo Hydroxyapatite Growth and Proliferation, Calcif. Tissue Int., 1991, 49(3), p 193-196
CAS
Article
Google Scholar
H. Luo, G. Xiong, C. Zhang, D. Li, Y. Zhu, R. Guo, and Y. Wan, Surface Controlled Calcium Phosphate Formation on Three-Dimensional Bacterial Cellulose-Based Nanofibers, Mater. Sci. Eng. C, 2015, 49, p 526-533
CAS
Article
Google Scholar
K.A. Gross, C.C. Berndt, P. Stephens, and R. Dinnebier, Oxyapatite in Hydroxyapatite Coatings, J. Mater. Sci., 1998, 33, p 3985-3991
CAS
Article
Google Scholar
N. Antolotti, S. Bertini, C. Fanaro, X. Ranz, C. Rey, F. Rusticchelli, and A. Scrivani, Interface characterization of different apatite coatings. In: Thermal Spray. Meeting the Challenges of the 21st Century, C. Coddet (Ed.), Proceedings 15th ITSC, May 25-29, 1998, Nice, France, 1998, p 1121-1126.
O. Graßmann and R.B. Heimann, Compositional and Microstructural Changes of Engineered Plasma-Sprayed Hydroxyapatite Coatings on Ti6Al4V Substrates During Incubation in Protein-Free Simulated Body Fluid, J. Biomed. Mater. Res., 2000, 53(6), p 685-693
Article
Google Scholar
L.Q. Wang, Generalized Fourier Law, Int. J. Heat Mass Transf., 1994, 37(17), p 2627-2634
Article
Google Scholar
T. Kijima and M. Tsutsumi, Preparation and Thermal Properties of Dense Polycrystalline Oxyhydroxyapatite, J. Am. Ceram. Soc., 1979, 62(9-10), p 455-560
CAS
Article
Google Scholar
P.V. Riboud, Composition et stabilité des phases a structure d’apatite dans le systeme CaO-P2O5-oxide de Fer-H2O a haute temperature, Ann. Chim., 1973, 8, p 381-390
CAS
Google Scholar
C. Rey, Personal Communication
S. Dyshlovenko, B. Pateyron, L. Pawłowski, and D. Murano, Numerical Simulation of Hydroxyapatite Powder Behaviour in Plasma Jet, Surf. Coat. Technol., 2004, 179, p 110-117
CAS
Article
Google Scholar
E.R. Kreidler and F.A. Hummel, Phase Relations in the System SrO-P2O5 and the Influence of Water Vapor on the Formation of Sr4P2O9, Inorg. Chem., 1967, 6(5), p 884-891
CAS
Article
Google Scholar
M.T. Carayon and J.L. Lacout, Study of the Ca/P Atomic Ratio of the Amorphous Phase in Plasma-Sprayed Hydroxyapatite Coatings, J. Solid State Chem., 2003, 172, p 339-350
CAS
Article
Google Scholar
K.A. Gross, C.C. Berndt, and H. Herman, Amorphous Phase Formation in Plasma-Sprayed Hydroxyapatite Coatings, J. Biomed. Mater. Res., 1998, 39(3), p 407-414
CAS
Article
Google Scholar
R.B. Heimann and R. Wirth, Formation and Transformation of Amorphous Calcium Phosphates on Titanium Alloy Surfaces During Atmospheric Plasma Spraying and Their Subsequent In Vitro Performance, Biomaterials, 2006, 27, p 823-831
CAS
Article
Google Scholar
J. Götze, H. Hildebrandt, and R.B. Heimann, Charakterisierung des in vitro-Resorptions-verhaltens von plasmagespritzten Hydroxylapatit-Schichten [Characterization of the in vitro resorption behavior of plasma-sprayed hydroxylapatite coatings], BIOmaterialien, 2001, 2(1), p 54-60
Article
Google Scholar
K.A. Gross and M.R. Phillips, Identification and Mapping of the Amorphous Phase in Plasma-Sprayed Hydroxyapatite Coatings Using Scanning Cathodoluminescence Microscopy, J. Mater. Sci. Mater. Med., 1998, 9(12), p 797-802
CAS
Article
Google Scholar
T.P. Ntsoane, M. Topic, M. Härting, R.B. Heimann, and C. Theron, Spatial and Depth-Resolved Studies of Air Plasma-Sprayed Hydroxyapatite Coatings by Means of Diffraction Techniques: Part I, Surf. Coat. Technol., 2016, 294, p 153-163
CAS
Article
Google Scholar
K.A. Gross, V. Gross, and C.C. Berndt, Thermal Analysis of Amorphous Phases in Hydroxyapatite Coatings, J. Am. Ceram. Soc., 1998, 81(1), p 106-112
CAS
Article
Google Scholar
H.V. Tran, Investigation into the Thermal Dehydroxylation and Decomposition of Hydroxyapatite During Atmospheric Plasma Spraying: NMR and Raman Spectroscopic Study of As-Sprayed Coatings and Coatings Incubated in Simulated Body Fluid. Ph.D. Thesis, Department of Mineralogy, Technische Universität Bergakademie Freiberg, Freiberg, Germany, 2004
R. Cusco, F. Guitian, S. de Aza, and L. Artus, Differentiation Between Hydroxyapatite and ß-Tricalcium Phosphate by Means of µ-Raman Spectroscopy, J. Eur. Ceram. Soc., 1998, 18, p 1301-1305
CAS
Article
Google Scholar
R.B. Heimann, and T.A. Vu, Improvement of Adhesion of Bioceramic Coatings on Jaw and Bone Implants Made from Titanium Alloy. Second Interim Report, SMWK Project No. 7541.82-0390/414, February 15, 1996
M. Weinlaender, J. Beumer, III, E.B. Kenney, P.K. Moy, and F. Adar, Raman Microprobe Investigation of the Calcium Phosphate Phase of Three Commercially Available Plasma-Flame-Sprayed Hydroxyapatite Coated Dental Implants, J. Mater. Sci. Mater. Med., 1992, 3, p 397-401
CAS
Article
Google Scholar
I. Demnati, D. Grossin, C. Combes, and C. Rey, Plasma-Sprayed Apatite Coatings: Review of Physical–Chemical Aspects and Their Biological Consequences, J. Med. Biol. Eng., 2014, 34, p 1-7
Article
Google Scholar
I. Demnati, D. Grossin, O. Marsan et al., Comparison of Physical–Chemical and Mechanical Properties of Chlorapatite and Hydroxyapatite Plasma Sprayed Coatings, Open Biomed. Eng. J., 2015, 9, p 42-55
CAS
Article
Google Scholar
U. Posset, E. Löcklin, R. Thull, and W. Kiefer, Vibrational Spectroscopic Study of Tetracalcium Phosphate in Pure Polycrystalline Form and as a Constituent of a Self-Setting Bone Cement, J. Biomed. Mater. Res., 1998, 40, p 640-645
CAS
Article
Google Scholar
R.B. Heimann, Novel Approaches Towards Design and Biofunctionality of Plasma-Sprayed Osteoconductive Calcium Phosphate Coatings for Biomedical Implants: The Concept of Bond Coats, Trends in Biomaterials Research, P.J. Pannone, Ed., Nova Science Publishers Inc., New York, 2007, p 1-80
Google Scholar
H.M. Kim, T. Miyazaki, T. Kokubo, and T. Nakamura, Revised Simulated Body Fluid, Bioceramics, 2001, 13, p 47-50
Google Scholar
R.B. Heimann, H.V. Tran, and P. Hartmann, Laser-Raman and Nuclear Magnetic Resonance (NMR) Studies on Plasma-Sprayed Hydroxyapatite Coatings: Influence of Bioinert Bond Coats on Phase Composition and Resorption Kinetics in Simulated Body Fluid, Mater.-wiss. Werkstofftechn., 2003, 34(12), p 1163-1169
CAS
Article
Google Scholar
P. Hartmann, C. Jäger, S. Barth, J. Vogel, and K. Meyer, Solid State NMR, X-Ray diffraction, and Infrared Characterization of Local Structure in Heat-Treated Oxyhydroxyapatite Microcrystals: An Analogy of the Thermal Deposition of Hydroxyapatite During Plasma-Spray Procedure, J. Solid State Chem., 2001, 160, p 460-468
CAS
Article
Google Scholar
C. Jäger, T. Welzel, W. Meyer-Zaika, and M. Epple, A Solid-State NMR Investigation of the Structure of Nanocrystalline Hydroxyapatite, Magn. Reson. Chem., 2006, 44, p 573-580
Article
CAS
Google Scholar
C. Jäger, S. Maltsev, and A. Karrasch, Progress of Structural Investigation of Amorphous Calcium Phosphate (ACP) and Hydroxyapatite (HAp): Disorder and Surfaces as seen by Solid State NMR, Key Eng. Mater., 2006, 309-311, p 69-72
Article
Google Scholar
D. McConnell and M.H. Hey, The Oxyapatite (Voelckerite) Problem, Min. Mag., 1969, 37(86), p 301-303
CAS
Article
Google Scholar
J.A. Voelcker, Die chemische Zusammensetzung des Apatits nach eigenen vollständigen Analysen [Chemical composition of apatite according to complete analyses sui generis], Ber. Deutsch. Chem. Ges., 1883, 16, p 2460-2464
Article
Google Scholar
A.F. Rogers, A New Locality for Voelckerite and the Validity of Voelckerite as a Mineral Species, Min. Mag., 1914, 17, p 155-162
CAS
Google Scholar
F. Korber and G. Trömel, Untersuchungen über Kalk-Phosphorsäure- und Kalk-Phosphorsäure-Kieselsäure-Verbindungen [Investigation on Lime-Phosphoric Acid and Lime-Phosphoric Acid-Silicic Acid Compounds], Z. Elektrochemie, 1932, 38, p 578-582
CAS
Google Scholar
M.A. Bredig, H.H. Franck, and H. Füldner, Beiträge zur Kenntnis der Kalk-Phosphorsäure-Verbindungen II, [Contributions to the Knowledge of Lime-Phosphoric Acid Compounds II], Z. Elektrochemie, 1933, 39, p 959-969
CAS
Google Scholar
N. De Leeuw, J.R. Bowe, and J.A.L. Rabone, A computational Investigation of Stoichiometric and Calcium-Deficient Oxy- and Hydroxyapatite, Faraday Discuss., 2007, 134, p 195-214
Article
Google Scholar
P. Alberius Henning, A. Landa-Canovas, A.K. Larsson, and S. Lidin, The Structure of Oxyapatite Solved by HREM, Acta Cryst. B, 1999, 55, p 170-176
CAS
Article
Google Scholar
L. Calderin, M.J. Stott, and A. Rubio, Electronic and Crystallographic Structure of Apatite, Phys. Rev. B, 2003, 67, p 134106-134112
Article
CAS
Google Scholar
C.J. Liao, F.H. Lin, K.S. Chen, and J.S. Sun, Thermal Decomposition and Reconstruction of Hydroxyapatite in Air Atmosphere, Biomaterials, 1999, 20, p 1807-1813
CAS
Article
Google Scholar
J.C. Trombe and G. Montel, Sur la préparation del’oxyapatite phospho-calcique, C. R. Acad. Sci. Paris, 1971, 273, p 462-465
CAS
Google Scholar
J.C. Trombe, Contribution á l’étude de la decomposition et de la réactivité de certaines apatites hydroxylées et carbonates, Ann. Chim. (Paris), 14th Ser., 1973, 8, p 335-347
CAS
Google Scholar
R.B. Heimann, Characterisation of As-Sprayed and Incubated Hydroxyapatite Coatings with High Resolution Techniques, Mater.-wiss. Werkstofftechn., 2009, 40(1-2), p 21-30
Google Scholar
G. Montel, G. Bonel, J.C. Trombe, J.C. Heughebaert, and C. Rey, Progress dans le domaine de la chimie des composes phosphores solides a structure d’apatite, Pure Appl. Chem., 1980, 52(4), p 973-987
CAS
Article
Google Scholar
I. Demnati, M. Parco, D. Grossin, I. Fagoaga, C. Drouet, G. Barykin, C. Combes, I. Braceras, S. Gonsalves, and C. Rey, Hydroxyapatite Coating on Titanium by a Low Energy Plasma Spraying Mini-Gun, Surf. Coat. Technol., 2012, 206, p 2346-2353
CAS
Article
Google Scholar
R.B. Heimann, Tracking the Thermal Decomposition of Plasma-Sprayed Hydroxylapatite, Am. Mineral., 2015, 100(11-12), p 2419-2425
Article
Google Scholar
P. Ducheyne, S. Radin, and L. King, The Effect of Calcium Phosphate Ceramic Composition and Structure on In Vitro Behavior. I. Dissolution, J. Biomed. Mater. Res., 1993, 27, p 5-34
Article
Google Scholar
R.Z. LeGeros, Calcium Phosphates in Oral Biology and Medicine, Monographs in Oral Science Karger, Basel, 1991
Google Scholar
R.G. Courtney-Harris, M.V. Kayser, and S. Downes, Comparison of the Early Production of Extracellular Matrix on Dense Hydroxyapatite and Hydroxyapatite-Coated Titanium in Cell and Organ Culture, Biomaterials, 1994, 16(6), p 489-495
Article
Google Scholar
R.Z. LeGeros, I. Orly, M. Gregoire, and G. Daculsi, Substrate Surface Dissolution and Interfacial Biological Mineralization, The Bone-Biomaterials Interface, J.E. Davies, Ed., University of Toronto Press, Toronto, 1991, p 76-88
Google Scholar
L. Chou, B. Marek, and W.R. Wagner, Effect of Hydroxyapatite Coating Crystallinity on Biosolubility, Cell Attachment Efficiency and Proliferation In Vitro, Biomaterials, 1999, 19, p 977-985
Article
Google Scholar
R.B. Heimann, Design of Novel Plasma-Sprayed Hydroxyapatite-Bond Coat Bioceramic Systems, J. Thermal Spray Technol., 1999, 8(4), p 597-604
CAS
Article
Google Scholar
B.S. Ng, I. Annergren, A.M. Soutar, K.A. Khor, and A.E. Jarfors, Characterisation of a Duplex TiO2/CaP Coating on Ti6Al4V for Hard Tissue Replacement, Biomaterials, 2005, 26(10), p 1087-1095
CAS
Article
Google Scholar
M.S. Tung and D. Skrtic, Interfacial Properties of Hydroxyapatite, Fluoroapatite and Octacalcium Phosphate, Octacalcium Phosphate. Monographs in Oral Science, Vol 8, L.C. Chow and E.D. Eanes, Ed., Karger, Basel, 2001, p 112-129
Chapter
Google Scholar
P. Hartman and W. Perdok, On the Relation Between Structure and Morphology of Crystals, Acta Cryst., 1955, 8, p 49-52
CAS
Article
Google Scholar
R.A. Terpstra, P. Bennema, P. Hartman, C.F. Woensdregt, W.G. Perdok, and M.L. Senechal, F Faces of Apatite and Its Morphology: Theory and Observation, J. Crystal Growth, 1986, 78, p 468-478
CAS
Article
Google Scholar
J. Weng, Y. Cao, J. Chen, and X. Zhang, Significance of Water Promoting Amorphous to Crystalline Conversion of Apatite in Plasma Sprayed Coatings, J. Mater. Sci. Lett., 1995, 14, p 211-213
CAS
Article
Google Scholar
T. Albrektsson, B. Chrcanovic, M. Jacobsson, and A. Wennerberg, Osseointegration of Implants—A Biological and Clinical Overview, JSM Dent. Surg., 2017, 2(3), p 1022
Google Scholar
Z. Othman, B.C. Pastor, S. van Rijt, and P. Habibovic, Understanding Interaction Between Biomaterials and Biological Systems Using Proteomics, Biomaterials, 2018, 167, p 191-204
CAS
Article
Google Scholar