Skip to main content

Advertisement

Log in

Microstructures and Properties of Warm-Sprayed Carbonated Hydroxyapatite Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Carbonated hydroxyapatite (CHA) coatings were deposited onto 316L stainless steel substrates using an in-house developed warm spraying system. Microstructures of the coatings were comprehensively investigated. Microhardness, tensile strength and wear resistance of the CHA coatings were examined. In addition, bioactivities of the coatings were studied after immersing in simulated body fluid (SBF). Results show that the as-sprayed coatings exhibited typical lamellar architectures consisting of partially melted and flattened splats, i.e., with molten shells and un-molten cores of original powders. The CHA coatings had nearly identical Ca/P ratios, crystalline structures and phase constitutions to those of the feedstock powders, indicating that undesired decompositions caused by overheating can be avoided by employing the warm spraying process. Microhardness and tensile strength of as-sprayed coatings were around 690 and 11.4-20.6 MPa, respectively. Moreover, the warm-sprayed CHA coating exhibited a high resistance against abrasion wear when sliding took place with polymers. After being immersed in Hank’s SBF for 28 and 60 days, new apatite was formed on the coating surface corroborating the good biocompatibility of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.A. Nawawi, A.S.F. Alqap, and I. Sopyan, Recent Progress on Hydroxyapatite-Based Dense Biomaterials for Load Bearing Bone Substitutes, Recent Pat. Mater. Sci., 2011, 4, p 63-80

    Article  Google Scholar 

  2. A. Haider, S. Haider, S.S. Han, and Inn-Kyu Kang, Recent Advances in the Synthesis, Fictionalization and Biomedical Applications of Hydroxyapatite: A Review, RSC Adv., 2017, 7, p 7442-7458

    Article  Google Scholar 

  3. E. Mohseni, E. Zalnezhad, and A.R. Bushroa, Comparative Investigation on the Adhesion of Hydroxyapatite Coating on Ti-6Al-4V Implant: A Review Paper, Int. J Adhes. Adhesi., 2014, 48, p 238-257

    Article  Google Scholar 

  4. R.S. Lima, K.A. Khor, H. Li, P. Cheang, and B.R. Marple, HVOF Spraying of Nanostructured Hydroxyapatite for Biomedical Applications, Mater. Sci. Eng. A, 2005, 396, p 181-187

    Article  Google Scholar 

  5. S. Ramesh, C.Y. Tan, I. Sopyan, M. Hamdi, and W.D. Teng, Consolidation of Nanocrystalline Hydroxyapatite Powder, Sci. Technol. Adv. Mater., 2007, 8, p 124-130

    Article  Google Scholar 

  6. B.Q. Li, Y.Q. Huang, Y.L. Wang, and D.C. Jia, Carbonated Apatite Coating on Chitosan with Gradient Distribution via Ions Assembly, Int. J. Mod. Phys. B, 2010, 24, p 5987-5994

    Article  Google Scholar 

  7. M. Hasegawa, Y. Doi, and A. Uchida, Cell-Mediated Bioresorption of Sintered Carbonate Apatite in Rabbits, J. Bone Jt. Surg., 2003, 85, p 142-147

    Article  Google Scholar 

  8. A. Cahyanto, M. Maruta, K. Tsuru, S. Matsuya, and K. Ishikawa, Fabrication of Bone Cement that Fully Transforms to Carbonate Apatite, Dent. Mater. J., 2005, 34(3), p 394-401

    Article  Google Scholar 

  9. X. Wei, C. Fu, K. Savino, and M.Z. Yates, Carbonated Hydroxyapatite Coatings with Aligned Crystal Domains, Cryst. Growth Des., 2012, 12, p 3474-3480

    Article  Google Scholar 

  10. K. Adriano, M. Mauro, B.P. Luigi, R. Antonio, and T. Anna, Synthesis of Carbonated Hydroxyapatites: Efficiency of the Substitution and Critical Evaluation of Analytical Methods, J. Mol. Struct., 2005, 744, p 221-228

    Google Scholar 

  11. M. Fleet, Carbonated Hydroxyapatite: Materials, Synthesis, and Applications, Soc. Photo-Opt. Instrum. Eng., 2015, 45, p 863-868

    Google Scholar 

  12. K. Igeta, Y. Kuwamura, N. Horiuchi, K. Nozaki, D. Shiraishi, M. Aizawa, K. Hashimoto, K. Yamashita, and A. Nagai, Morphological and Functional Changes in RAW264 Macrophage-Like Cells in Response to a Hydrated Layer of Carbonate- Substituted Hydroxyapatite, J Biomed. Mater. Res. A, 2017, 105, p 1063-1070

    Article  Google Scholar 

  13. S. Liao, F. Watari, M. Uo, S. Ohkawa, K. Tamura, W. Wang, and F.Z. Cui, The Preparation and Characteristics of a Carbonated Hydroxyapatite/Collagen Composite at Room Temperature, J Biomed. Mater. Res. B, 2005, 74, p 817-821

    Article  Google Scholar 

  14. C.H. Yoder, N.T. Landes, L.K. Tran, A.K. Smithand, and J.D. Pasteris, The Relative Stabilities of A- and B-Type Carbonate Substitution in Apatites Synthesized in Aqueous Solution, Miner. Mag., 2016, 80(6), p 977-983

    Article  Google Scholar 

  15. K. Kanayama, W. Sriarj, H. Shimokawa, K. Ohya, Y. Doi, and T. Shibutani, Osteoclast and Osteoblast Activities on Carbonate Apatite Plates in Cell Cultures, J. Biomater. Appl., 2011, 26, p 435-449

    Article  Google Scholar 

  16. C.L. Chu, T. Hu, L.H. Yin, Y.P. Pu, Y.S. Dong, P.H. Lin, C.Y. Chung, K.W.K. Yeung, and P.K. Chu, Microstructural Characteristics and Biocompatibility of a type-B Carbonated Hydroxyapatite Coating Deposited on NiTi Shape Memory Alloy, Biomed. Mater. Eng., 2009, 19, p 401-408

    Google Scholar 

  17. M. Stigter, J. Bezemer, K. de Groot, and P. Layrolle, Incorporation of Different Antibiotics Into Carbonated Hydroxyapatite Coatings on Titanium Implants, Release and Antibiotic Efficacy, J. Control Release, 2004, 99, p 127-137

    Article  Google Scholar 

  18. S. Tang, B. Tian, Y.J. Guo, Z.A. Zhu, and Y.P. Guo, Chitosan/Carbonated Hydroxyapatite Composite Coatings: Fabrication, Structure and Biocompatibility, Surf. Coat. Technol., 2014, 251, p 210-216

    Article  Google Scholar 

  19. Y. Huang, Q.Q. Ding, X.F. Pang, S.G. Han, and Y.J. Yan, Corrosion Behavior and Biocompatibility of Strontium and Fluorine Co-doped Electro Deposited Hydroxyapatite Coatings, Appl. Surf. Sci., 2013, 282, p 456-462

    Article  Google Scholar 

  20. N. Hijõn, M.V. Cabañas, I. Izquierdo-Barba, and M. Vallet-Regí, Bioactive Carbonate-Hydroxyapatite Coatings Deposited Onto Ti6Al4V Substrate, Chem. Mater., 2004, 16, p 1451-1455

    Article  Google Scholar 

  21. A.J. Goldberg, Y.X. Liu, M.C. Advincula, G. Gronowicz, P. Habibovic, and L.T. Kuhn, Fabrication and Characterization of Hydroxyapatite-Coated Polystyrene Disks for Use in Osteoprogenitor Cell Culture, J Biomater. Sci., 2010, 21, p 1371-1387

    Article  Google Scholar 

  22. S.C.G. Leeuwenburgh, J.G.C. Wolke, L. Lommen, T. Pooters, J. Schoonman, and J.A. Jansen, Mechanical Properties of Porous, Electrosprayed Calcium Phosphate Coatings, J. Biomed. Mater. Res. A, 2006, 78, p 558-569

    Article  Google Scholar 

  23. J.A. Darr, Z.X. Guo, V. Raman, M. Bououdina, and I.U. Rehman, Metal Organic Chemical Vapour Deposition (MOCVD) of Bone Mineral Like Carbonated Hydroxyapatite Coatings, Chem. Commun., 2004, 6, p 696-697

    Article  Google Scholar 

  24. Y.Y. Özbek, F.E. Baştan, and F. Üstel, Synthesis and Characterization of Strontium-Doped Hydroxyapatite for Biomedical Applications, J. Therm. Anal. Calorim., 2016, 125, p 745-750

    Article  Google Scholar 

  25. Y.S. Tian, X.L. Qian, and M.Q. Chen, Effect of Saturated Steam Treatment on the Crystallinity of Plasma-Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 2015, 266, p 38-41

    Article  Google Scholar 

  26. S. Vahabzadeh, M. Roy, A. Bandyopadhyay, and S. Bose, Phase Stability and Biological Property Evaluation of Plasma Sprayed Hydroxyapatite Coatings for Orthopedic and Dental Applications, Acta Biomater., 2015, 17, p 47-55

    Article  Google Scholar 

  27. G. Bolelli, D. Bellucci, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, P. Müller, and A. Sola, Comparison Between Suspension Plasma Sprayed and High Velocity Suspension Flame Sprayed Bioactive Coatings, Surf. Coat. Technol., 2015, 280, p 232-249

    Article  Google Scholar 

  28. H. Li, K.A. Khor, and P. Cheang, Effect of the Powders’ Melting State on the Properties of HVOF Sprayed Hydroxyapatite Coatings, Mater. Sci. Eng. A, 2000, 293, p 71-80

    Article  Google Scholar 

  29. R.M. Molak, H. Araki, M. Watanabe, H. Katanoda, N. Ohno, and S. Kuroda, Warm Spray Forming of Ti-6Al-4V, J. Therm. Spray Technol., 2014, 23(1), p 197-212

    Article  Google Scholar 

  30. M. Watanabe, M. Komatsu, and S. Kuroda, WC-Co/Al Multilayer Coatings by Warm Spray Deposition, J. Therm. Spray Technol., 2012, 21(3–4), p 596-607

    Google Scholar 

  31. P. Chivavibul, M. Watanabe, S. Kuroda, J. Kawakita, M. Komatsu, K. Sato, and J. Kitamura, Effect of Powder Characteristics on Properties of Warm-Sprayed WC-Co Coatings, J. Therm. Spray Technol., 2010, 19(1), p 81-88

    Article  Google Scholar 

  32. G.C. Ji, C.J. Li, Y.Y. Wang, and W.Y. Li, Microstructural Characterization and Abrasive Wear Performance of HVOF Sprayed Cr3C2-NiCr Coating, Surf. Coat. Technol., 2006, 200(24), p 6749-6757

    Article  Google Scholar 

  33. S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, Warm Spraying-a Novel Coating Process Based on High-Velocity Impact of Solid Particles, Sci. Technol. Adv. Mater., 2008, 9(3), p 033002

    Article  Google Scholar 

  34. S. Chandra and P. Fauchais, Formation of Solid Splats During Thermal Spraying Deposition, J. Therm. Spray Technol., 2009, 18(2), p 148-180

    Article  Google Scholar 

  35. L.M. Sun, C.C. Berndt, and C.P. Grey, Phase, Structural and Microstructural Investigations of Plasma Sprayed Hydroxyapatite Coatings, Mater. Sci. Eng. A, 2003, 360, p 70-84

    Article  Google Scholar 

  36. T. Kokubo and H. Takadama, How Useful is SBF in Predicting in vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907-2915

    Article  Google Scholar 

  37. G.C. Ji, H.T. Wang, X. Chen, X.B. Bai, Z.X. Dong, and F.G. Yang, Characterization of Cold-Sprayed Multimodal WC-12Co Coating, Surf. Coat. Technol., 2013, 235, p 536-543

    Article  Google Scholar 

  38. G.C. Ji, X. Chen, H.T. Wang, X.B. Bai, and Z.X. Dong, Deformation Behaviors of Cold Sprayed WC-Co Splats on WC-Co Substrate, J. Therm. Spray Technol., 2015, 24(6), p 1100-1110

    Article  Google Scholar 

  39. P.H. Gao, Y.G. Li, C.J. Li, G.J. Yang, and C.X. Li, Influence of Powder Porous Structure on the Deposition Behavior of Cold-Sprayed WC-12Co Coatings, J. Therm. Spray Technol., 2008, 17, p 742-749

    Article  Google Scholar 

  40. A. Dey and A.K. Mukhopadhyay, Anisotropy in Nanohardness of Microplasma Sprayed Hydroxyapatite Coating, Adv. Appl. Ceram., 2010, 109(6), p 346-354

    Article  Google Scholar 

  41. K.A. Kuor, H. Li, and P. Cheang, Processing-Microstructure-Property Relations in HVOF Sprayed Calcium Phosphate Based Bioceramic Coatings, Biomaterials, 2003, 24, p 2233-2243

    Article  Google Scholar 

  42. S. Vahabzadeh, M. Roy, A. Bandyopadhyay, and S. Bose, Phase Stability and Biological Property Evaluation of Plasmas Prayed Hydroxyapatite Coatings for Orthopedic and Dental Applications, Acta Biomater., 2015, 17, p 47-55

    Article  Google Scholar 

  43. J.L. Sui, W. Bo, Z. Hai, N. Cao, and M.S. Li, Effect of Stand-off Distance on Structure and Mechanical Properties of Hydroxyapatite Coatings Plasma-Sprayed Onto Carbon/Carbon Composites, Surf. Rev. Lett., 2007, 14, p 371-376

    Article  Google Scholar 

  44. X.B. Zheng, H. Ji, J.Q. Huang, and C.X. Ding, Plasma Sprayed Ti and HA Coatings: Comparative Study Between APS and VPS, Acta Metal. Sin., 2005, 18(9), p 339-344

    Google Scholar 

  45. H.T. Wang, X. Chen, X.B. Bai, G.C. Ji, and Z.X. Dong, Microstructure and Properties of Cold Sprayed Multimodal WC-17Co Deposits, Int. J Refract. Met H., 2014, 45, p 196-203

    Article  Google Scholar 

  46. J.A. Picas, M. Punset, M.T. Baile, E. Martín, and A. Forn, Effect of Oxygen/Fuel Ratio on the in-Flight Particle Parameters and Properties of HVOF WC-CoCr Coatings, Surf. Coat. Technol., 2011, 205, p 364-368

    Article  Google Scholar 

  47. H. Kim, R.P. Camata, Y.K. Vohra, and W.R. Lacefield, Control of Phase Composition in Hydroxyapatite/Tetracalcium Phosphate Biphasic Thin Coatings for Biomedical Applications, J. Mater. Sci. Mater. Med., 2005, 16, p 961-966

    Article  Google Scholar 

  48. G.F. Xu, I.A. Aksay, and J.T. Groves, Continuous Crystalline Carbonate Apatite Thin Films. A Biomimetic Approach, J. Am. Chem. Soc., 2001, 123, p 2196-2203

    Article  Google Scholar 

  49. S.W.K. Kweh, K.A. Khor, and P. Cheang, Plasma-Sprayed Hydroxyapatite (HA) Coatings with Flame-Spheroidized Feedstock: Microstructure and Mechanical Properties, Biomaterials, 2000, 21, p 1223-1234

    Article  Google Scholar 

  50. N. Horiuchi, M. Nakamura, A. Nagai, K. Katayama, and K. Yamashita, Proton Conduction Related Electrical Dipole and Space Charge Polarization in Hydroxyapatite, J. Appl. Phys., 2012, 112, p 5934

    Article  Google Scholar 

  51. B.A. Sava, C. Tardei, C.M. Simonescu, L. Boroica, and A. Melinesu, Hydroxyapatite Nanopowders Obtained by Sol-Gel Method, Synthesis and Properties, Optoelectron. Adv. Mater., 2015, 9, p 1415-1424

    Google Scholar 

  52. C.C. Chen and S.J. Ding, Effect of Heat Treatment on Characteristics of Plasma Sprayed Hydroxyapatite Coatings, Mater. Trans., 2006, 47, p 935-940

    Article  Google Scholar 

  53. S. Saber-Samandari and K.A. Gross, Nanoindentation Reveals Mechanical Properties Within Thermally Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 2009, 203, p 1660-1664

    Article  Google Scholar 

  54. Y. Han, K.W. Xu, G. Montay, T. Fu, and J. Lu, Evaluation of Nanostructured Carbonated Hydroxyapatite Coatings Formed by a Hybrid Process of Plasma Spraying and Hydrothermal Synthesis, J. Biomed. Mater. Res., 2002, 60(4), p 511-516

    Article  Google Scholar 

  55. S. Bodhak and S.B. Nath, Friction and Wear Properties of Novel HDPE-hap-Al2O3 Biocomposites Against Alumina Counterface, J. Biomater. Appl., 2009, 23(5), p 407-433

    Article  Google Scholar 

  56. C.K. Lee, Fabrication Characterization and Wear Corrosion Testing of Bioactive Hydroxyapatite/Nano-TiO2 Composite Coatings On Anodic Ti-6Al-4V Substrate for Biomedical Applications, Mater. Sci. Eng. B, 2012, 177(11), p 810-818

    Article  Google Scholar 

  57. S. Bodhak, S. Nath, and B. Basu, Fretting Wear Properties of Hydroxyapatite, Alumina Containing High Density Polyethylene Biocomposites Against Zirconia, J. Biomed. Mater. Res. A, 2008, 85A(1), p 83-98

    Article  Google Scholar 

  58. R. Palanivelu and A.R. Kumar, Scratch and Wear Behavior of Plasma Sprayed Nano Ceramics Bilayer Al2O3-13 wt%TiO2/Hydroxyapatite Coated on Medical Grade Titanium Substrates in SBF Environment, Appl. Surf. Sci., 2014, 315(4), p 372-379

    Article  Google Scholar 

  59. Y.Q. Fu, Y. Wang, K.A. Khor, and A.W. Batchelor, Fretting Wear Behaviors of Thermal Sprayed Hydroxyapatite (HA) Coating Under Unlubricated Conditions, Wear, 1998, 217(1), p 132-139

    Article  Google Scholar 

  60. S.M. Full, C. Delman, J.M. Gluck, R. Abdmaulen, and R.J. Shemin, Effect of Fiber Orientation of Collagen-Based Electrospun Meshes on Human Fibroblasts for Ligament Tissue Engineering Applications, J Biomed. Mater. Res. B, 2015, 103(1), p 39-46

    Article  Google Scholar 

  61. R. Bajai, J.M. Keller, and S.C. Datt, On the Microhardness of Irradiated Polycarbonate, Makromol. Chem., Macromol. Symp., 2011, 20–21(1), p 461-464

    Google Scholar 

  62. M.C. Lopes, H. Ribeiro, M.C.G. Santos, L.M. Seara, F.L.Q. Ferreira, R.L. Lavall, and G.G. Silva, High Performance Polyurethane Composites with Isocyanate-Functionalized Carbon Nanotubes: Improvements in Tear Strength and Scratch Hardness, J. Appl. Polym. Sci., 2016, 133, p 44394

    Google Scholar 

  63. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity, Biomaterials, 2006, 27, p 2907-2915

    Article  Google Scholar 

  64. M. Bohner and J. Lemaitre, Can Bioactivity be Tested In Vitro with SBF Solution?, Biomaterials, 2009, 30(12), p 2175

    Article  Google Scholar 

  65. H. Pan, X. Zhao, B.W. Darvell, and W.W. Lu, Apatite-Formation Ability-Predictor of “Bio-Activity”, Acta Biomater., 2010, 6(11), p 4181

    Article  Google Scholar 

  66. G. Bolelli, D. Bellucci, V. Cannillo, L. Lusvarghi, A. Sola, N. Stiegler, P. Müller, A. Killinger, R. Gadow, L. Altomare, and L.D. Nardo, Suspension Thermal Spraying of Hydroxyapatite: Microstructure and In Vitro Behavior, Mater. Sci. Eng. C, 2014, 34, p 287-303

    Article  Google Scholar 

  67. H. Tang, D.Z. Yu, Y. Luo, and F.P. Wang, Preparation and Characterization of HA Microflowers Coating on AZ31 Magnesium Alloy by Micro-Arc Oxidation and a Solution Treatment, Appl. Surf. Sci., 2013, 264, p 816-822

    Article  Google Scholar 

  68. C. Kee, H. Ismail, A. Fauzi, and M. Noor, Effect of Synthetic Technique and Carbonate Content on the Crystallinity and Morphology of Carbonated Hydroxyapatite, J. Mater. Sci. Technol., 2013, 29(8), p 761-764

    Article  Google Scholar 

  69. P.C. Rath, B.P. Singh, L. Besra, and S. Bhattacharjee, Multiwalled Carbon Nanotubes Reinforced Hydroxyapatite-Chitosan Composite Coating on Ti Metal: Corrosion and Mechanical Properties, J. Am. Ceram. Soc., 2012, 95(9), p 2725-2731

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by National Science Foundation of China (No. 51461022), Base & Talent/Outstanding Young Talent Program of Jiujiang Science and Technology (No. 2016.43[75]), Science and Technology Planning Program of Jiangxi Provincial Education Department (No. GJJ161068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Chang Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, HL., Ji, GC., Chen, QY. et al. Microstructures and Properties of Warm-Sprayed Carbonated Hydroxyapatite Coatings. J Therm Spray Tech 27, 924–937 (2018). https://doi.org/10.1007/s11666-018-0735-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0735-x

Keywords

Navigation