Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 6, pp 968–982 | Cite as

Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2−x Deposits

  • Hwasoo LeeEmail author
  • Ramachandran Chidambaram Seshadri
  • Zdenek Pala
  • Sanjay Sampath
Peer Reviewed
  • 221 Downloads

Abstract

In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2−x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

Keywords

metastable phases plasma spray thermal spray thermoelectric properties TiO2−x titanium oxides 

Notes

Acknowledgments

This work was supported by the National Science Foundation Partnership for Innovation (NSF-PFI) Program under Award Number IIP-1114205. The US-Czech collaboration included in this paper was funded in part by the NSF—International collaboration supplement. Zdenek Pala has been financially supported by the AdMat project of the Czech Science Foundation (14-36566G). Support through the Stony Brook Industrial Consortium for Thermal Spray Technology is also acknowledged. This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory, under Contract No. DE-SC0012704.

References

  1. 1.
    H. Scherrer, S. Scherrer, and D. Rowe, Section V Thermoelectric Systems and Applications, Thermoelectric Handbook—Macro to Nano, D.M. Rowe, Ed., Taylor & Francis, 2006Google Scholar
  2. 2.
    G.J. Snyder and E.S. Toberer, Complex Thermoelectric Materials, Nat. Mater., 2008, 7(2), p 105-114CrossRefGoogle Scholar
  3. 3.
    Y. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder, High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping, Adv. Funct. Mater., 2011, 21(2), p 241-249CrossRefGoogle Scholar
  4. 4.
    M. Zhou, J.-F. Li, and T. Kita, Nanostructured AgPbmSbTem+2 System Bulk Materials with Enhanced Thermoelectric Performance, J. Am. Chem. Soc., 2008, 130(13), p 4527-4532CrossRefGoogle Scholar
  5. 5.
    S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang, and X.B. Zhao, Nanostructures in High-Performance (GeTe)×(AgSbTe2)100−x thermoelectric materials, Nanotechnology, 2008, 19(24), p 245707CrossRefGoogle Scholar
  6. 6.
    H. Lee, R.C. Seshadri, S.J. Han, and S. Sampath, TiO2−X Based Thermoelectric Generators Enabled by Additive and Layered Manufacturing, Appl. Energy, 2017, 192, p 24-32CrossRefGoogle Scholar
  7. 7.
    C. Wood, Materials for Thermoelectric Energy-Conversion, Rep. Prog. Phys., 1988, 51(4), p 459-539CrossRefGoogle Scholar
  8. 8.
    S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, and K. Kalantar-zadeh, Transition Metal Oxides-Thermoelectric Properties, Prog. Mater. Sci., 2013, 58(8), p 1443-1489CrossRefGoogle Scholar
  9. 9.
    H. Lee, S.J. Han, R. Chidambaram Seshadri, and S. Sampath, Thermoelectric Properties of In Situ Plasma Spray Synthesized Sub-Stoichiometry TiO2−x, Sci. Rep., 2016, 6, p 36581CrossRefGoogle Scholar
  10. 10.
    H. Herman, Plasma-Sprayed Coatings, Sci. Am., 1988, 259(3), p 112-117 (in English)CrossRefGoogle Scholar
  11. 11.
    P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44-66CrossRefGoogle Scholar
  12. 12.
    P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360CrossRefGoogle Scholar
  13. 13.
    D. Apelian, M. Paliwal, R.W. Smith, and W.F. Schilling, Melting and Solidification in Plasma Spray Deposition—Phenomenological Review, Int. Met. Rev., 2013, 28(1), p 271-294CrossRefGoogle Scholar
  14. 14.
    S. Sampath and H. Herman, Rapid Solidification and Microstructure Development During Plasma Spray Deposition, J. Therm. Spray Technol., 1996, 5(4), p 445-456CrossRefGoogle Scholar
  15. 15.
    L.M. Sun, C.C. Berndt, and C.P. Grey, Phase, Structural and Microstructural Investigations of Plasma Sprayed Hydroxyapatite Coatings, Mater. Sci. Eng. A Struct., 2003, 360(1–2), p 70-84CrossRefGoogle Scholar
  16. 16.
    Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, and H. Herman, Effects of Pores and Interfaces on Effective Properties of Plasma Sprayed Zirconia Coatings, Acta Mater., 2003, 51(18), p 5319-5334CrossRefGoogle Scholar
  17. 17.
    W. Chi, S. Sampath, and H. Wang, Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2636-2645CrossRefGoogle Scholar
  18. 18.
    A. Sharma, A. Gouldstone, S. Sampath, and R.J. Gambino, Anisotropic Electrical Conduction from Heterogeneous Oxidation States in Plasma Sprayed TiO2 Coatings, J. Appl. Phys., 2006, 100(11), p 114906CrossRefGoogle Scholar
  19. 19.
    J.R. Colmenares-Angulo, V. Cannillo, L. Lusvarghi, A. Sola, and S. Sampath, Role of Process Type and Process Conditions on Phase Content and Physical Properties of Thermal Sprayed TiO2 Coatings, J. Mater. Sci., 2009, 44(9), p 2276-2287CrossRefGoogle Scholar
  20. 20.
    J.F. Bisson, C. Moreau, M. Dorfman, C. Dambra, and J. Mallon, Influence of Hydrogen on the Microstructure of Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Therm. Spray Technol., 2005, 14(1), p 85-90CrossRefGoogle Scholar
  21. 21.
    A. Vaidya, G. Bancke, S. Sampath, and H. Herman, Influence of Process Variables on the Plasma-sprayed Coatings: An Integrated Study, Thermal Spray 2001: New Surfaces for a New Millennium, Proceedings of the International Thermal Spray Conference, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Eds., May 28–30, 2001 (Singapore), ASM International, Materials Park, OH, 2001, p 1345-1349Google Scholar
  22. 22.
    S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D.L. Gilmore, and R.A. Neiser, Development of Process Maps for Plasma Spray: Case Study for Molybdenum, Mater. Sci. Eng. A Struct., 2003, 348(1–2), p 54-66CrossRefGoogle Scholar
  23. 23.
    V. Srinivasan, M. Friis, A. Vaidya, T. Streibl, and S. Sampath, Particle Injection in Direct Current Air Plasma Spray: Salient Observations and Optimization Strategies, Plasma Chem. Plasma Process., 2007, 27(5), p 609-623CrossRefGoogle Scholar
  24. 24.
    P. Scardi and M. Leoni, Whole Powder Pattern Modelling, Acta Crystallogr. A, 2002, 58(Pt 2), p 190-200CrossRefGoogle Scholar
  25. 25.
    R.W. Cheary and A. Coelho, A Fundamental Parameters Approach to X-ray Line-Profile Fitting, J. Appl. Crystallogr., 1992, 25(2), p 109-121CrossRefGoogle Scholar
  26. 26.
    S.J. Han, Y. Chen, and S. Sampath, Role of Process Conditions on the Microstructure, Stoichiometry and Functional Performance of Atmospheric Plasma Sprayed La (Sr) MnO3 Coatings, J. Power Sources, 2014, 259, p 245-254CrossRefGoogle Scholar
  27. 27.
    T. Streibl, A. Vaidya, M. Friis, V. Srinivasan, and S. Sampath, A Critical Assessment of Particle Temperature Distributions During Plasma Spraying: Experimental Results for YSZ, Plasma Chem. Plasma Process., 2006, 26(1), p 73-102CrossRefGoogle Scholar
  28. 28.
    R.S. Lima and B.R. Marple, Near-Isotropic Air Plasma Sprayed Titania, Acta Mater., 2004, 52(5), p 1163-1170CrossRefGoogle Scholar
  29. 29.
    I.C. Madsen, N.V.Y. Scarlett, L.M.D. Cranswick, and T. Lwin, Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: Samples 1a to 1h, J. Appl. Crystallogr., 2001, 34(4), p 409-426CrossRefGoogle Scholar
  30. 30.
    I.E. Grey, C. Li, and I.C. Madsen, Phase-Equilibria and Structural Studies on the Solid-Solution MgTi2O5-Ti3O5, J. Solid State Chem., 1994, 113(1), p 62-73CrossRefGoogle Scholar
  31. 31.
    P. Ctibor, R.C. Seshadri, J. Henych, V. Nehasil, Z. Pala, and J. Kotlan, Photocatalytic and Electrochemical Properties of Single- and Multi-layer Sub-stoichiometric Titanium Oxide Coatings Prepared by Atmospheric Plasma Spraying, J. Adv. Ceram., 2016, 5(2), p 126-136CrossRefGoogle Scholar
  32. 32.
    J.F. Banfield, D.R. Veblen, and D.J. Smith, The Identification of Naturally Occurring TiO2 (B) by Structure Determination Using High-Resolution Electron Microscopy, Image Simulation, and Distance-Least-Squares Refinement, Am. Miner., 1991, 76(3–4), p 343-353Google Scholar
  33. 33.
    A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo, and E.R. Fuller, Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54(12), p 3343-3349CrossRefGoogle Scholar
  34. 34.
    M. Pasandideh-Fard, V. Pershin, S. Chandra, and J. Mostaghimi, Splat Shapes in a Thermal Spray Coating Process: Simulations and Experiments, J. Therm. Spray Technol., 2002, 11(2), p 206-217CrossRefGoogle Scholar
  35. 35.
    H. Zhang, H.B. Xiong, L.L. Zheng, A. Vaidya, L. Li and S. Sampath, Melting Behavior of In-flight Particles and its Effects on Splat Morphology in Plasma Spraying, 2002 ASME International Mechanical Engineering Congress and Exposition, November 17–22, American Society of Mechanical Engineers, New Orleans, LA, 2002Google Scholar
  36. 36.
    Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (Nanofluids) Flowing Upward Through a Vertical Pipe, Int. J. Heat Mass Transf., 2007, 50(11), p 2272-2281CrossRefGoogle Scholar
  37. 37.
    Y. Li and T. Ishigaki, Thermodynamic Analysis of Nucleation of Anatase and Rutile from TiO2 Melt, J. Cryst. Growth, 2002, 242(3), p 511-516CrossRefGoogle Scholar
  38. 38.
    A. Singh, Thermal Conductivity of Nanofluids, Def. Sci. J., 2008, 58(5), p 600CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Hwasoo Lee
    • 1
    Email author
  • Ramachandran Chidambaram Seshadri
    • 1
  • Zdenek Pala
    • 2
  • Sanjay Sampath
    • 1
  1. 1.Center for Thermal Spray ResearchStony Brook UniversityStony BrookUSA
  2. 2.Institute of Plasma Physics, ASCRPrague 8Czech Republic

Personalised recommendations