Journal of Thermal Spray Technology

, Volume 27, Issue 5, pp 827–842 | Cite as

Influence of Powder Morphology and Microstructure on the Cold Spray and Mechanical Properties of Ti6Al4V Coatings

  • Venkata Naga Vamsi Munagala
  • Valary Akinyi
  • Phuong Vo
  • Richard R. Chromik
Peer Reviewed


The powder microstructure and morphology has significant influence on the cold sprayability of Ti6Al4V coatings. Here, we compare the cold sprayability and properties of coatings obtained from Ti6Al4V powders of spherical morphology (SM) manufactured using plasma gas atomization and irregular morphology (IM) manufactured using the Armstrong process. Coatings deposited using IM powders had negligible porosity and better properties compared to coatings deposited using SM powders due to higher particle impact velocities, porous surface morphology and more deformable microstructure. To evaluate the cohesive strength, multi-scale indentation was performed and hardness loss parameter was calculated. Coatings deposited using SM powders exhibited poor cohesive strength compared to coatings deposited using IM powders. Images of the residual indents showed de-bonding and sliding of adjacent splats in the coatings deposited using SM powders irrespective of the load. Coatings deposited using IM powders showed no evidence of de-bonding at low loads. At high loads, splat de-bonding was observed resulting in hardness loss despite negligible porosity. Thus, while the powders from Armstrong process lead to a significant improvement in sprayability and coating properties, further optimization of powder and cold spray process will be required as well as consideration of post-annealing treatments to obtain acceptable cohesive strength.


Armstrong process cold spray nanoindentation particle morphology Ti6Al4V titanium alloys 



The authors are thankful for the technical assistance from Jean-Francois Alarie, Dina Goldbaum and Maniya Aghasibeig. The authors gratefully acknowledge the contributions of Rene Cooper from Cristal Metals for providing the irregular Ti6Al4V powders.


  1. 1.
    E. Brandl, F. Palm, V. Michailov, B. Viehweger, and C. Leyens, Mechanical Properties of Additive Manufactured Titanium (Ti-6Al-4V) Blocks Deposited by a Solid-State Laser and Wire, Mater. Des., 2011, 32(10), p 4665-4675CrossRefGoogle Scholar
  2. 2.
    E. Brandl, A. Schoberth, and C. Leyens, Morphology, Microstructure, and Hardness of Titanium (Ti-6Al-4V) Blocks Deposited by Wire-Feed Additive Layer Manufacturing (ALM), Mater. Sci. Eng. A, 2012, 532, p 295-307CrossRefGoogle Scholar
  3. 3.
    J. Cizek, O. Kovarik, J. Siegl, K.A. Khor, and I. Dlouhy, Influence of Plasma and Cold Spray Deposited Ti Layers on High-Cycle Fatigue Properties of Ti6Al4V Substrates, Surf. Coatings Technol., 2013, 217, p 23-33CrossRefGoogle Scholar
  4. 4.
    L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker, Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2009, 2(1), p 20-32CrossRefGoogle Scholar
  5. 5.
    D.E. Wolfe, T.J. Eden, J.K. Potter, and A.P. Jaroh, Investigation and Characterization of Cr3C2-Based Wear-Resistant Coatings Applied by the Cold Spray Process, J. Therm. Spray Technol., 2006, 15(3), p 400-412CrossRefGoogle Scholar
  6. 6.
    H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying—A Materials Perspective, Acta Mater., 2016, 116, p 382-407CrossRefGoogle Scholar
  7. 7.
    D. Goldbaum, R.R. Chromik, N. Brodusch, and R. Gauvin, Microstructure and Mechanical Properties of Ti Cold-Spray Splats Determined by Electron Channeling Contrast Imaging and Nanoindentation Mapping, Microsc. Microanal., 2015, 21(3), p 570-581CrossRefGoogle Scholar
  8. 8.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394CrossRefGoogle Scholar
  9. 9.
    A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 30(6), p 369-395CrossRefGoogle Scholar
  10. 10.
    V.K. Champagne, The Cold Spray Materials Deposition Process Fundamentals and Applications, Woodhead Publishing Limited, Cambridge, 2007CrossRefGoogle Scholar
  11. 11.
    A. Papyrin, Cold Spray Technology, Elsevier, New York, 2007Google Scholar
  12. 12.
    P. Vo, E. Irissou, J.G. Legoux, and S. Yue, Mechanical and Microstructural Characterization of Cold-Sprayed Ti-6Al-4V After Heat Treatment, J. Therm. Spray Technol., 2013, 22(6), p 954-964CrossRefGoogle Scholar
  13. 13.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742CrossRefGoogle Scholar
  14. 14.
    D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.G. Legoux, and E. Irissou, The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats, J. Therm. Spray Technol., 2012, 21(2), p 288-303CrossRefGoogle Scholar
  15. 15.
    N.W. Khun, A.W.Y. Tan, K.J.W. Bi, and E. Liu, Effects of Working Gas on Wear and Corrosion Resistances of Cold Sprayed Ti-6Al-4V Coatings, Surf. Coat. Technol., 2016, 302, p 1-12CrossRefGoogle Scholar
  16. 16.
    H. Aydin, M. Alomair, W. Wong, and P. Vo, Cold Sprayability of Mixed Commercial Purity Ti Plus Ti6Al4V Metal Powders, J. Therm. Spray Technol., 2017, 26(3), p 360-370CrossRefGoogle Scholar
  17. 17.
    W. Sun, A.W.Y. Tan, I. Marinescu, W.Q. Toh, and E. Liu, Adhesion, Tribological and Corrosion Properties of Cold-Sprayed CoCrMo and Ti6Al4V Coatings on 6061-T651 Al Alloy, Surf. Coatings Technol., 2017, 326, p 291-298CrossRefGoogle Scholar
  18. 18.
    A.W.Y. Tan, W. Sun, Y.P. Phang, M. Dai, I. Marinescu, Z. Dong, and E. Liu, Effects of Traverse Scanning Speed of Spray Nozzle on the Microstructure and Mechanical Properties of Cold-Sprayed Ti6Al4V Coatings, J. Therm. Spray Technol., 2017, 26(7), p 1484-1497CrossRefGoogle Scholar
  19. 19.
    V.S. Bhattiprolu, K.W. Johnson, O.C. Ozdemir, and G.A. Crawford, Influence of Feedstock Powder and Cold Spray Processing Parameters on Microstructure and Mechanical Properties of Ti-6Al-4V Cold Spray Depositions, Surf. Coatings Technol., 2018, 335, p 1-12CrossRefGoogle Scholar
  20. 20.
    D. MacDonald, R. Fernandez, F. Delloro, and B. Jodoin, Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing, J. Therm. Spray Technol., 2017, 26(4), p 598-609CrossRefGoogle Scholar
  21. 21.
    M.V. Vidaller, A. List, F. Gaertner, T. Klassen, S. Dosta, and J.M. Guilemany, Single Impact Bonding of Cold Sprayed Ti-6Al-4V Powders on Different Substrates, J. Therm. Spray Technol., 2015, 24(4), p 644-658CrossRefGoogle Scholar
  22. 22.
    X.T. Luo, Y.K. Wei, Y. Wang, and C.J. Li, Microstructure and Mechanical Property of Ti and Ti6Al4V Prepared by an in-Situ Shot Peening Assisted Cold Spraying, Mater. Des., 2015, 85, p 527-533CrossRefGoogle Scholar
  23. 23.
    K. Araci, D. Mangabhai, and K. Akhtar, Production of Titanium by the Armstrong Process®, in Titanium Powder Metall. (2015), pp. 149–162.
  24. 24.
    A.M. Birt, V.K. Champagne, R.D. Sisson, and D. Apelian, Microstructural Analysis of Ti-6Al-4V Powder for Cold Gas Dynamic Spray Applications, Adv. Powder Technol., 2015, 26(5), p 1335-1347CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, N. Brodusch, S. Descartes, R.R. Chromik, and R. Gauvin, Microstructure Refinement of Cold-Sprayed Copper Investigated by Electron Channeling Contrast Imaging, Microsc. Microanal., 2014, 20, p 1499-1506CrossRefGoogle Scholar
  26. 26.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564-1583CrossRefGoogle Scholar
  27. 27.
    D. Goldbaum, J. Ajaja, R.R. Chromik, W. Wong, S. Yue, E. Irissou, and J.G. Legoux, Mechanical Behavior of Ti Cold Spray Coatings Determined by a Multi-Scale Indentation Method, Mater. Sci. Eng. A, 2011, 530(1), p 253-265CrossRefGoogle Scholar
  28. 28.
    A.M. Birt, V.K. Champagne, R.D. Sisson, and D. Apelian, Microstructural Analysis of Cold-Sprayed Ti-6Al-4V at the Micro- and Nano-Scale, J. Therm. Spray Technol., 2015, 24(7), p 1277-1288CrossRefGoogle Scholar
  29. 29.
    J.I. Qazi, O.N. Senkov, J. Rahim, A. Genc, and F.H. (Sam) Froes, Phase Transformations in Ti-6Al-4V–xH Alloys, Metall. Mater. Trans. A, 2001, 32A, p 2453-2463CrossRefGoogle Scholar
  30. 30.
    B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, and E.J. Lavernia, Effect of Particle Size, Morphology, and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings, Surf. Coat. Technol., 2006, 201, p 3422-3429CrossRefGoogle Scholar
  31. 31.
    W.D. Nix and H. Gao, Indentation Size Effects in Crystalline Materials : A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids, 1998, 46(3), p 411-425CrossRefGoogle Scholar
  32. 32.
    I. Sen, S. Roy, and M.F.X. Wagner, Indentation Response and Structure-Property Correlation in a Bimodal Ti-6Al-4V Alloy, Adv. Eng. Mater., 2017, 1700298, p 1-12Google Scholar
  33. 33.
    G.B. Viswanathan, E. Lee, D.M. Maher, S. Banerjee, and H.L. Fraser, Direct Observations and Analyses of Dislocation Substructures in the α Phase of an Α/β Ti-Alloy Formed by Nanoindentation, Acta Mater., 2005, 53(19), p 5101-5115CrossRefGoogle Scholar
  34. 34.
    T.B. Britton, H. Liang, F.P.E. Dunne, and A.J. Wilkinson, The Effect of Crystal Orientation on the Indentation Response of Commercially Pure Titanium: Experiments and Simulations, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 2010, 466, p 695-719CrossRefGoogle Scholar
  35. 35.
    W. Sun, A. Wei, Y. Tan, N.W. Khun, I. Marinescu, and E. Liu, Effect of Substrate Surface Condition on Fatigue Behavior of Cold Sprayed Ti6Al4V Coatings, Surf. Coat. Technol., 2017, 320, p 452-457CrossRefGoogle Scholar
  36. 36.
    C.M. Lewandowski, N. Co-investigator, and C.M. Lewandowski, Powder Metal Technologies and Applications, ASM Int. Mater. Park. OH, 2015, 7, p 2762Google Scholar
  37. 37.
    W. Wong, P. Vo, E. Irissou, A.N. Ryabinin, J. Legoux, and S. Yue, Effect of Particle Morphology and Size Distribution on Cold-Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2013, 22, p 1140-1153CrossRefGoogle Scholar
  38. 38.
    M. Winnicki, A. Małachowska, G. Dudzik, M. Rutkowska-Gorczyca, M. Marciniak, K. Abramski, A. Ambroziak, and L. Pawłowski, Numerical and Experimental Analysis of Copper Particles Velocity in Low-Pressure Cold Spraying Process, Surf. Coatings Technol., 2015, 268, p 230-240CrossRefGoogle Scholar
  39. 39.
    D. Lioma, N. Sacks, and I. Botef, Cold Gas Dynamic Spraying of WC–Ni Cemented Carbide Coatings, Int. J. Refract. Met. Hard Mater., 2015, 49, p 365-373CrossRefGoogle Scholar
  40. 40.
    S. Yin, E.J. Ekoi, T.L. Lupton, and P. Denis, Cold Spraying of WC-Co-Ni Coatings Using Porous WC-17Co Powders: Formation Mechanism, Microstructure Characterization and Tribological Performance, Mater. Des., 2017, 126, p 305-313CrossRefGoogle Scholar
  41. 41.
    P.H. Gao, Y.G. Li, C.J. Li, G.J. Yang, and C.X. Li, Influence of Powder Porous Structure on the Deposition Behavior of Cold-Sprayed WC-12Co Coatings, J. Therm. Spray Technol., 2008, 17(5–6), p 742-749CrossRefGoogle Scholar
  42. 42.
    K.H. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scr. Mater., 2008, 59(7), p 768-771CrossRefGoogle Scholar
  43. 43.
    D. Goldbaum, Micromechanical Testing of Cold Sprayed Ti Splats nd Coatings, McGill University, Montreal, 2012Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Venkata Naga Vamsi Munagala
    • 1
  • Valary Akinyi
    • 1
  • Phuong Vo
    • 2
  • Richard R. Chromik
    • 1
  1. 1.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.National Research Council CanadaBouchervilleCanada

Personalised recommendations