Journal of Thermal Spray Technology

, Volume 27, Issue 4, pp 680–694 | Cite as

Effect of Nozzle Geometry on the Microstructure and Properties of HVAF-Sprayed WC-10Co4Cr and Cr3C2-25NiCr Coatings

  • V. Matikainen
  • H. Koivuluoto
  • P. Vuoristo
  • J. Schubert
  • Š. Houdková
Peer Reviewed

Abstract

Thermally sprayed hard metal coatings are the industrial standard solution for numerous demanding applications to improve wear resistance. In the aim of improving coating quality by utilising finer particle size distributions, several approaches have been studied to control the spray temperature. The most viable solution is to use the modern high velocity air-fuel (HVAF) spray process, which has already proven to produce high-quality coatings with dense structures. In HVAF spray process, the particle heating and acceleration can be efficiently controlled by changing the nozzle geometry. In this study, fine WC-10Co4Cr and Cr3C2-25NiCr powders were sprayed with three nozzle geometries to investigate their effect on the particle temperature, velocity and coating microstructure. The study demonstrates that the particle melting and resulting carbide dissolution can be efficiently controlled by changing the nozzle geometry from cylindrical to convergent–divergent. Moreover, the average particle velocity was increased from 780 to over 900 m/s. The increase in particle velocity significantly improved the coating structure and density. Further evaluation was carried out to resolve the effect of particle in-flight parameters on coating structure and cavitation erosion resistance, which was significantly improved in the case of WC-10Co4Cr coatings with the increasing average particle velocity.

Keywords

HVAF < processing HVOF < processing HP/HVOF < processing WC-CO-Cr < feedstock chromium carbide < feedstock cavitation erosion < properties diagnostics <  processing 

Notes

Acknowledgments

The authors would like to thank Mr. Mikko Kylmälahti (Tampere University of Technology) for the assistance with HVAF spraying of the coatings and Mr. Leo Hyvärinen (Tampere University of Technology) for carrying out the XRD measurements. The authors gratefully acknowledge Tekes (Finnish Funding Agency for Technology and Innovation), the participating companies of the HYBRIDS research programme, and DIMECC Ltd. for financial support. MSc Matikainen acknowledges the personal grant from Finnish Cultural Foundation.

References

  1. 1.
    Q. Wang, S. Zhang, Y. Cheng, J. Xiang, X. Zhao, and G. Yang, Wear and Corrosion Performance of WC-10Co4Cr Coatings Deposited by Different HVOF and HVAF Spraying Processes, Surf. Coat. Technol., 2013, 218(1), p 127-136CrossRefGoogle Scholar
  2. 2.
    G. Bolelli, L.M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsan, V. Matikainen, P. Nylen, P. Sassatelli, R. Trache, and P. Vuoristo, Tribology of HVOF- and HVAF-Sprayed WC-10Co4Cr Hardmetal Coatings: A Comparative Assessment, Surf. Coat. Technol., 2015, 265, p 125-144CrossRefGoogle Scholar
  3. 3.
    A. Verstak and V. Baranovski, Activated Combustion HVAF Coatings for Protection against Wear and High Temperature Corrosion, Thermal Spray 2003: Advancing the Science and Applying the Technology, Vol 1, B.R. Marple and C. Moreau, Ed., ASM International, Orlando, 2003, p 535-541Google Scholar
  4. 4.
    Š. Houdková, F. Zahálka, M. Kašparová, and L.M. Berger, Comparative Study of Thermally Sprayed Coatings under Different Types of Wear Conditions for Hard Chromium Replacement, Tribol. Lett., 2011, 43(2), p 139-154CrossRefGoogle Scholar
  5. 5.
    L.M. Berger, Application of Hardmetals as Thermal Spray Coatings, Int. J. Refract. Met. Hard Mater., 2015, 49(1), p 350-364CrossRefGoogle Scholar
  6. 6.
    B. Wielage, A. Wank, H. Pokhmurska, T. Grund, C. Rupprecht, G. Reisel, and E. Friesen, Development and Trends in HVOF Spraying Technology, Surf. Coat. Technol., 2006, 201(5), p 2032-2037CrossRefGoogle Scholar
  7. 7.
    A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C. Berndt, J. Berghaus, M. Boulos, J. Brogan, A. Bourtsalas, A. Dolatabadi, M. Dorfman, T. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E. Jordan, K. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P. Masset, J. Matejicek, G. Mauer et al., The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440CrossRefGoogle Scholar
  8. 8.
    V. Matikainen, K. Khanlari, A. Milanti, H. Koivuluoto, and P. Vuoristo, Spray Parameter Effect on HVAF Sprayed (Fe, Cr)C-30FeNiCrSi Hardmetal Coatings, Thermal Spray 2016: Fostering a Sustainable World for a Better Life, Shanghai, May 10–12, 2016, p 184-189Google Scholar
  9. 9.
    V. Matikainen, G. Bolelli, H. Koivuluoto, M. Honkanen, M. Vippola, L. Lusvarghi, and P. Vuoristo, A Study of Cr3C2-Based HVOF- and HVAF-Sprayed Coatings: Microstructure and Carbide Retention, J. Therm. Spray Technol., 2017, 26(6), p 1239-1256CrossRefGoogle Scholar
  10. 10.
    R.K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, and P. Sampathkumaran, Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings, J. Therm. Spray Technol., 2016, 25(6), p 1217-1230CrossRefGoogle Scholar
  11. 11.
    L. Jacobs, M.M. Hyland, and M. De Bonte, Comparative Study of WC-Cermet Coatings Sprayed via the HVOF and the HVAF Process, J. Therm. Spray Technol., 1998, 7(2), p 213-218CrossRefGoogle Scholar
  12. 12.
    K. Akimoto and Y. Horie, Study of HVAF WC-Cermet Coatings, Thermal Spraying: Current Status and Future Trends, A. Ohmori, Ed., High Temperature Society of Japan, Kobe, 1995, p 313-316Google Scholar
  13. 13.
    A. Verstak, V. Baranovski, and U.S.A. Virginia, Deposition of Carbides by Activated Combustion HVAF Spraying, Thermal Spray 2004: Advances in Technology and Application, ASM International, Osaka, May 10–12 2004, p 551-555Google Scholar
  14. 14.
    G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, V. Matikainen, L. Lusvarghi, C. Lyphout, N. Markocsan, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Sliding and Abrasive Wear Behaviour of HVOF- and HVAF-Sprayed Cr3C2-NiCr Hardmetal Coatings, Wear, 2016, 358–359, p 32-50CrossRefGoogle Scholar
  15. 15.
    C. Lyphout, S. Björklund, M. Karlsson, M. Runte, G. Reisel, and P. Boccaccio, Screening Design of Supersonic Air Fuel Processing for Hard Metal Coatings, J. Therm. Spray Technol., 2014, 23(8), p 1323-1332CrossRefGoogle Scholar
  16. 16.
    Q. Wang, Z. Tang, and L. Cha, Cavitation and Sand Slurry Erosion Resistances of WC-10Co-4Cr Coatings, J. Mater. Eng. Perform., 2015, 24(6), p 2435-2443CrossRefGoogle Scholar
  17. 17.
    G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsan, V. Matikainen, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Tribology of HVOF- and HVAF-Sprayed WC-10Co4Cr Hardmetal Coatings: A Comparative Assessment, Surf. Coat. Technol., 2015, 265, p 125-144CrossRefGoogle Scholar
  18. 18.
    A. Karimi and J.L. Martin, Cavitation Erosion of Materials, Int. Met. Rev., 1986, 31(1), p 1-26CrossRefGoogle Scholar
  19. 19.
    W. Tomlinson, N. Kalitsounakis, and G. Vekinis, Cavitation Erosion of Aluminas, Ceram. Int., 1999, 25(4), p 331-338CrossRefGoogle Scholar
  20. 20.
    R. Schwetzke and H. Kreye, Cavitation Erosion of HVOF Coatings, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., ASM International, Cincinnati, 1996, p 153-158Google Scholar
  21. 21.
    V. Matikainen, K. Niemi, H. Koivuluoto, and P. Vuoristo, Abrasion, Erosion and Cavitation Erosion Wear Properties of Thermally Sprayed Alumina Based Coatings, Coatings, 2014, 4(1), p 18-36CrossRefGoogle Scholar
  22. 22.
    C. Bartuli, T. Valente, F. Cipri, E. Bemporad, and M. Tului, Parametric Study of an HVOF Process for the Deposition of Nanostructured WC-Co Coatings, J. Therm. Spray Technol., 2005, 14(June), p 187-195CrossRefGoogle Scholar
  23. 23.
    A.G. Evans and T.R. Wilshaw, Quasi-Static Solid Particle Damage in Brittle solids - I. Observations Analysis and Implications, Acta Metall., Pergamon, 1976, 24(10), p 939-956CrossRefGoogle Scholar
  24. 24.
    H. Katanoda, K. Sakata, K. Tagomori, N. Sugiyama, S. Sasaki, Y. Shinya, M. Yasuki, H. Sasaki, T. Nanbu, and K. Takashima, PIV Measurement and Numerical Simulation of the Particle Velocity in a HVAF Spray, Not Fiction: Thermal Spray the Key Technology in Modern Life!, DVS-German Welding Society, Barcelona, Spain, May 21–23, 2014, p 946-949Google Scholar
  25. 25.
    I. Hulka, V.A. Serban, M.L. Dan, V. Matikainen, and P. Vuoristo, Corrosion Behavior of WC-FeCrAl Coatings Deposited by HVOF and HVAF Thermal Spraying Methods, Chem. Bull. “Politehnica” Univ. Timis., 2016, 61, p 1-6Google Scholar
  26. 26.
    C. Verdon, A. Karimi, and J. Martin, A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures, Mater. Sci. Eng. A, 1998, 246, p 11-24CrossRefGoogle Scholar
  27. 27.
    J.K.N. Murthy, K.S. Prasad, K. Gopinath, and B. Venkataraman, Characterisation of HVOF Sprayed Cr3C2-50(Ni20Cr) Coating and the Influence of Binder Properties on Solid Particle Erosion Behaviour, Surf. Coat. Technol., 2010, 204(24), p 3975-3985CrossRefGoogle Scholar
  28. 28.
    S. Matthews, A. Asadov, S. Ruddell, and L.-M. Berger, Thermally Induced Metallurgical Processes in Cr3C2-NiCr Thermal Spray Coatings as a Function of Carbide Dissolution, J. Alloys Compd., 2017, 728, p 445-463CrossRefGoogle Scholar
  29. 29.
    C.J. Li, G.C. Ji, Y.Y. Wang, and K. Sonoya, Dominant Effect of Carbide Rebounding on the Carbon Loss during High Velocity Oxy-Fuel Spraying of Cr3C2-NiCr, Thin Solid Films, 2002, 419(1–2), p 137-143CrossRefGoogle Scholar
  30. 30.
    S.B. Mishra, S. Prakash, and K. Chandra, Studies on Erosion Behaviour of Plasma Sprayed Coatings on a Ni-based Superalloy, Wear, 2006, 260, p 422-432CrossRefGoogle Scholar
  31. 31.
    J. Matejicek, S. Sampath, D. Gilmore, and R. Neiser, In Situ Measurement of Residual Stresses and Elastic Moduli in Thermal Sprayed Coatings Part 2: Processing Effects on Properties of Mo Coatings, Acta Mater., 2003, 51, p 873-885CrossRefGoogle Scholar
  32. 32.
    A. Vackel and S. Sampath, Fatigue Behavior of Thermal Sprayed WC-CoCr-Steel Systems: Role of Process and Deposition Parameters, Surf. Coat. Technol., 2017, 315, p 408-416CrossRefGoogle Scholar
  33. 33.
    M. Isakov, V. Matikainen, H. Koivuluoto, and M. May, Systematic Analysis of Coating-Substrate Interactions in the Presence of Flow Localization, Surf. Coat. Technol., 2017, 324, p 264-280CrossRefGoogle Scholar
  34. 34.
    C. Lyphout and K. Sato, Optimization of WC-Based HVAF-Sprayed Coatings for Alternative to Hard Chromium: Role of Carbides Grain Size and Mean Free Path on Coating Wear and Corrosion Properties, Not Fiction: Thermal Spray the Key Technology in Modern Life!, Barcelona, Spain, May 21–23, 2014, p 956-961Google Scholar
  35. 35.
    L. Janka, J. Norpoth, R. Trache, and L.-M. Berger, Influence of Heat Treatment on the Abrasive Wear Resistance of a Cr3C2-NiCr Coating Deposited by an Ethene-Fuelled HVOF Spray Process, Surf. Coat. Technol., 2016, 291, p 444-451CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • V. Matikainen
    • 1
  • H. Koivuluoto
    • 1
  • P. Vuoristo
    • 1
  • J. Schubert
    • 2
  • Š. Houdková
    • 3
  1. 1.Tampere University of TechnologyTampereFinland
  2. 2.VZÚ PlzeňPilsenCzech Republic
  3. 3.University of West BohemiaPilsenCzech Republic

Personalised recommendations