Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 4, pp 624–640 | Cite as

Novel Method of Aluminum to Copper Bonding by Cold Spray

  • Si-Lin Fu
  • Cheng-Xin Li
  • Ying-Kang Wei
  • Xiao-Tao Luo
  • Guan-Jun Yang
  • Chang-Jiu Li
  • Jing-Long Li
Peer Reviewed
  • 291 Downloads

Abstract

Cold spray bonding (CSB) has been proposed as a new method for joining aluminum and copper. At high speeds, solid Al particles impacted the groove between the two substrates to form a bond between Al and Cu. Compared to traditional welding technologies, CSB does not form distinct intermetallic compounds. Large stainless steel particles were introduced into the spray powders as in situ shot peen particles to create a dense Al deposit and to improve the bond strength of joints. It was discovered that introducing shot peen particles significantly improved the flattening ratio of the deposited Al particles. Increasing the proportion of shot peen particles from 0 to 70 vol.% decreased the porosity of the deposits from 12.4 to 0.2%, while the shear strength of joints significantly increased. The tensile test results of the Al-Cu joints demonstrated that cracks were initiated at the interface between the Al and the deposit. The average tensile strength was 71.4 MPa and could reach 81% of the tensile strength of pure Al.

Keywords

cold spraying dissimilar metal joint in situ shot peening mechanical property microstructure 

Notes

Acknowledgment

This research was supported by the National Natural Science Foundation of China (No. 51761145108).

References

  1. 1.
    S.D. Meshram, T. Mohandas, and G.M. Reddy, Friction Welding of Dissimilar Pure Metals, J. Mater. Process. Technol., 2007, 184(1-3), p 330-337CrossRefGoogle Scholar
  2. 2.
    K.P. Mehta and V.J. Badheka, A Review on Dissimilar Friction Stir Welding of Copper to Aluminum: Process, Properties, and Variants, Mater. Manuf. Process., 2015, 31(3), p 233-254CrossRefGoogle Scholar
  3. 3.
    Z. Sun and R. Karppi, The Application of Electron Beam Welding for the Joining of Dissimilar Metals: An Overview, J. Mater. Process. Technol., 1996, 59(3), p 257-267CrossRefGoogle Scholar
  4. 4.
    J.E. Lee, D.H. Bae, W.S. Chung, K.H. Kim, J.H. Lee, and Y.R. Cho, Effects of Annealing on the Mechanical and Interface Properties of Stainless Steel/Aluminum/Copper Clad-Metal Sheets, J. Mater. Process. Technol., 2007, 187-188, p 546-549CrossRefGoogle Scholar
  5. 5.
    J.-P. Immarigeon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, and J.C. Beddoes, Lightweight Materials for Aircraft Applications, Trans. Indian Inst. Met., 2016, 70(1), p 125-131Google Scholar
  6. 6.
    A. Safarzadeh, M. Paidar, and H. Youzbashi-zade, A Study on the Effects Bonding Temperature and Holding Time on Mechanical and Metallurgical Properties of Al-Cu Dissimilar Joining by DFW, Trans. Indian Inst. Met., 2016, 70(1), p 125-131CrossRefGoogle Scholar
  7. 7.
    M. Akbari, P. Bahemmat, M. Haghpanahi, and M.K. Besharati, Givi, Enhancing Metallurgical and Mechanical Properties of Friction Stir Lap Welding of Al-Cu Using Intermediate Layer, Sci. Technol. Weld. Join., 2013, 18(6), p 518-524CrossRefGoogle Scholar
  8. 8.
    H.J. Liu, J.J. Shen, S. Xie, Y.X. Huang, F. Cui, C. Liu, and L.Y. Kuang, Weld Appearance and Microstructural Characteristics of Friction Stir Butt Barrier Welded Joints of Aluminium Alloy to Copper, Sci. Technol. Weld. Join., 2013, 17(2), p 104-110CrossRefGoogle Scholar
  9. 9.
    H.J. Liu, J.J. Shen, L. Zhou, Y.Q. Zhao, C. Liu, and L.Y. Kuang, Microstructural Characterisation and Mechanical Properties of Friction Stir Welded Joints of Aluminium Alloy to Copper, Sci. Technol. Weld. Join., 2013, 16(1), p 92-98CrossRefGoogle Scholar
  10. 10.
    I. Galvão, J.C. Oliveira, A. Loureiro, and D.M. Rodrigues, Formation and Distribution of Brittle Structures in Friction Stir Welding of Aluminium and Copper: Influence of Shoulder Geometry, Intermetallics, 2012, 22, p 122-128CrossRefGoogle Scholar
  11. 11.
    J. Nishiwaki, T. Kambe, Y. Kedo, Y. Harada, S. Muraishi, and S. Kumai, Numerical Analysis of Wavy Interface Formation and Successive Temperature Change in Magnetic Pulse Welded Al/Cu Joint, Mater. Sci. Forum, 2016, 877, p 655-661CrossRefGoogle Scholar
  12. 12.
    W. Shi, W. Wang, and Y. Huang, Laser Micro-welding of Cu-Al Dissimilar Metals, Int. J. Adv. Manuf. Technol., 2015, 85(1-4), p 185-189CrossRefGoogle Scholar
  13. 13.
    P.C. Seshagiri, G. Madhusudan Reddy, K. Srinivasa Rao, M. Govinda Raju, S.S. Bhattacharya, and K. Prasad Rao, Microstructure and Mechanical Properties of Sc modified Al-Cu Alloy (AA2219) Electron Beam Welds, Sci. Technol. Weld. Join., 2013, 13(5), p 415-421CrossRefGoogle Scholar
  14. 14.
    B. Gulenc, Investigation of Interface Properties and Weldability of Aluminum and Copper Plates by Explosive Welding Method, Mater. Des., 2008, 29(1), p 275-278CrossRefGoogle Scholar
  15. 15.
    M. Sedighi and M. Honarpisheh, Experimental Study of Through-Depth Residual Stress in Explosive Welded Al-Cu-Al Multilayer, Mater. Des., 2012, 37, p 577-581CrossRefGoogle Scholar
  16. 16.
    H. Amani and M. Soltanieh, Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals, Metal. Mater. Trans. B, 2016, 47(4), p 2524-2534CrossRefGoogle Scholar
  17. 17.
    C.Z. Xia, Y.J. Li, J. Wang, and H.J. Ma, Microstructure and Phase Constitution Near Interface of Cu/Al Vacuum Brazing, Mater. Sci. Technol., 2013, 23(7), p 815-818CrossRefGoogle Scholar
  18. 18.
    J. Peng, S. Fukumoto, L. Brown, and N. Zhou, Image Analysis of Electrode Degradation in Resistance Spot Welding of Aluminium, Sci. Technol. Weld. Join., 2013, 9(4), p 331-336CrossRefGoogle Scholar
  19. 19.
    M.N. Avettand-Fenoël, R. Taillard, G. Ji, and D. Goran, Multiscale Study of Interfacial Intermetallic Compounds in a Dissimilar Al 6082-T6/Cu Friction-Stir Weld, Metal. Mater. Trans. A, 2012, 43(12), p 4655-4666CrossRefGoogle Scholar
  20. 20.
    I. Galvão, A. Loureiro, D. Verdera, D. Gesto, and D.M. Rodrigues, Influence of Tool Offsetting on the Structure and Morphology of Dissimilar Aluminum to Copper Friction-Stir Welds, Metal. Mater. Trans. A, 2012, 43(13), p 5096-5105CrossRefGoogle Scholar
  21. 21.
    P. Xue, B.L. Xiao, D.R. Ni, and Z.Y. Ma, Enhanced Mechanical Properties of Friction Stir Welded Dissimilar Al-Cu Joint by Intermetallic Compounds, Mater. Sci. Eng. A, 2010, 527(21-22), p 5723-5727CrossRefGoogle Scholar
  22. 22.
    C.W. Tan, Z.G. Jiang, L.Q. Li, Y.B. Chen, and X.Y. Chen, Microstructural Evolution and Mechanical Properties of Dissimilar Al-Cu Joints Produced by Friction Stir Welding, Mater. Des., 2013, 51, p 466-473CrossRefGoogle Scholar
  23. 23.
    P. Xue, D.R. Ni, D. Wang, B.L. Xiao, and Z.Y. Ma, Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of the Dissimilar Al-Cu Joints, Mater. Sci. Eng. A, 2011, 528(13-14), p 4683-4689CrossRefGoogle Scholar
  24. 24.
    R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212CrossRefGoogle Scholar
  25. 25.
    M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 368(1-2), p 222-230CrossRefGoogle Scholar
  26. 26.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394CrossRefGoogle Scholar
  27. 27.
    R. Ghelichi, D. MacDonald, S. Bagherifard, H. Jahed, M. Guagliano, and B. Jodoin, Microstructure and Fatigue Behavior of Cold Spray Coated Al5052, Acta Mater., 2012, 60(19), p 6555-6561CrossRefGoogle Scholar
  28. 28.
    W.Y. Li, D.D. Zhang, C.J. Huang, S. Yin, M. Yu, F.F. Wang, and H.L. Liao, Modelling of Impact Behaviour of Cold Spray Particles: Review, Surf. Eng., 2014, 30(5), p 299-308CrossRefGoogle Scholar
  29. 29.
    X. Meng, J. Zhang, J. Zhao, Y. Liang, and Y. Zhang, Influence of Gas Temperature on Microstructure and Properties of Cold Spray 304SS Coating, J. Mater. Sci. Technol., 2011, 27(9), p 809-815CrossRefGoogle Scholar
  30. 30.
    V.K. Champagne, M.K. West, M. Reza Rokni, T. Curtis, V. Champagne, and B. McNally, Joining of Cast ZE41A Mg to Wrought 6061 Al by the Cold Spray Process and Friction Stir Welding, J. Therm. Spray Technol., 2015, 25(1-2), p 143-159CrossRefGoogle Scholar
  31. 31.
    X.-T. Luo, C.-X. Li, F.-L. Shang, G.-J. Yang, Y.-Y. Wang, and C.-J. Li, High Velocity Impact Induced Microstructure Evolution During Deposition of Cold Spray Coatings: A Review, Surf. Coat. Technol., 2014, 254, p 11-20CrossRefGoogle Scholar
  32. 32.
    H. Bu, M. Yandouzi, C. Lu, D. MacDonald, and B. Jodoin, Cold Spray Blended Al+Mg17Al12 Coating for Corrosion Protection of AZ91D Magnesium alloy, Surf. Coat. Technol., 2012, 207, p 155-162CrossRefGoogle Scholar
  33. 33.
    E. Sansoucy, P. Marcoux, L. Ajdelsztajn, and B. Jodoin, Properties of SiC-Reinforced Aluminum Alloy Coatings Produced by the Cold Gas Dynamic Spraying Process, Surf. Coat. Technol., 2008, 202(16), p 3988-3996CrossRefGoogle Scholar
  34. 34.
    Y.-K. Wei, X.-T. Luo, C.-X. Li, and C.-J. Li, Optimization of in situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating, J. Therm. Spray Technol., 2016, 26(1-2), p 173-183CrossRefGoogle Scholar
  35. 35.
    X.-T. Luo, Y.-K. Wei, Y. Wang, and C.-J. Li, Microstructure and Mechanical Property of Ti and Ti6Al4 V Prepared by an in situ Shot Peening Assisted Cold Spraying, Mater. Des., 2015, 85, p 527-533CrossRefGoogle Scholar
  36. 36.
    Z. Arabgol, H. Assadi, T. Schmidt, F. Gärtner, and T. Klassen, Analysis of Thermal History and Residual Stress in Cold-Sprayed Coatings, J. Therm. Spray Technol., 2013, 23(1-2), p 84-90CrossRefGoogle Scholar
  37. 37.
    S. Cho, K. Takagi, H. Kwon, D. Seo, K. Ogawa, K. Kikuchi, and A. Kawasaki, Multi-walled Carbon Nanotube-reinforced Copper Nanocomposite Coating Fabricated by Low-pressure Cold Spray Process, Surf. Coat. Technol., 2012, 206(16), p 3488-3494CrossRefGoogle Scholar
  38. 38.
    S. Dosta, M. Couto, and J.M. Guilemany, Cold Spray Deposition of a WC-25Co Cermet onto Al7075-T6 and Carbon Steel Substrates, Acta Mater., 2013, 61(2), p 643-652CrossRefGoogle Scholar
  39. 39.
    H. Lee and K. Ko, Effect of SiC Particle Size on Cold Sprayed Al-SiC Composite Coatings, Surf. Eng., 2013, 25(8), p 606-611CrossRefGoogle Scholar
  40. 40.
    K. Spencer, D.M. Fabijanic, and M.X. Zhang, The Use of Al-Al2O3 Cold Spray Coatings to Improve the Surface Properties of Magnesium Alloys, Surf. Coat. Technol., 2009, 204(3), p 336-344CrossRefGoogle Scholar
  41. 41.
    C.-J. Li and W.-Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167(2-3), p 278-283CrossRefGoogle Scholar
  42. 42.
    B.S. Deforce, T.J. Eden, and J.K. Potter, Cold Spray Al-5% Mg Coatings for the Corrosion Protection of Magnesium Alloys, J. Therm. Spray Technol., 2011, 20(6), p 1352-1358CrossRefGoogle Scholar
  43. 43.
    M. Diab, X. Pang, and H. Jahed, The Effect of Pure Aluminum Cold Spray Coating on Corrosion and Corrosion Fatigue of Magnesium (3% Al-1% Zn) Extrusion, Surf. Coat. Technol., 2016, 309, p 423-435CrossRefGoogle Scholar
  44. 44.
    E. Irissou, J.G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16(5-6), p 661-668CrossRefGoogle Scholar
  45. 45.
    G. Li, X.-F. Wang, and W.-Y. Li, Effect of Different Incidence Angles on Bonding Performance in Cold Spraying, Trans. Nonferr. Met. Soc. Chin., 2007, 17(1), p 116-121CrossRefGoogle Scholar
  46. 46.
    C.-J. Li, W.-Y. Li, Y.-Y. Wang, G.-J. Yang, and H. Fukanuma, A Theoretical Model for Prediction of Deposition Efficiency in Cold Spraying, Thin Solid Films, 2005, 489(1-2), p 79-85CrossRefGoogle Scholar
  47. 47.
    C. Otten, U. Reisgen, and M. Schmachtenberg, Electron Beam Welding of Aluminum to Copper: Mechanical Properties and Their Relation to Microstructure, Weld. World, 2015, 60(1), p 21-31CrossRefGoogle Scholar
  48. 48.
    Q.-Z. Zhang, W.-B. Gong, and W. Liu, Microstructure and Mechanical Properties of Dissimilar Al-Cu Joints by Friction Stir Welding, Trans. Nonferr. Met. Soc. Chin., 2015, 25(6), p 1779-1786CrossRefGoogle Scholar
  49. 49.
    S.A. Khodir, M.M.Z. Ahmed, E. Ahmed, S.M.R. Mohamed, and H. Abdel-Aleem, Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints, J. Mater. Eng. Perform., 2016, 25(11), p 4637-4648CrossRefGoogle Scholar
  50. 50.
    P. Xue, B. Xiao and Z. Ma, Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Al-Cu Thin Plate Joints, in 10th International Symposium on Friction Stir Welding (Beijing, 2014)Google Scholar
  51. 51.
    A. Esmaeili, M.K.B. Givi, and H.R.Z. Rajani, Investigation of Weld Defects in Dissimilar Friction stir Welding of Aluminium to Brass by Radiography, Sci. Technol. Weld. Join., 2013, 17(7), p 539-543CrossRefGoogle Scholar
  52. 52.
    A. Esmaeili, H.R. Zareie Rajani, M. Sharbati, M.K.B. Givi, and M. Shamanian, The Role of Rotation Speed on Intermetallic Compounds Formation and Mechanical Behavior of Friction Stir Welded Brass/Aluminum 1050 Couple, Intermetallics, 2011, 19(11), p 1711-1719CrossRefGoogle Scholar
  53. 53.
    A. Esmaeili, M.K.B. Givi, and H.R.Z. Rajani, A Metallurgical and Mechanical Study on Dissimilar Friction Stir welding of Aluminum 1050 to Brass (CuZn30), Mater. Sci. Eng. A, 2011, 528(22-23), p 7093-7102CrossRefGoogle Scholar
  54. 54.
    L. Qiao, H.H. Yang, and J.F. Sheng, Comparison Study on Friction-Welded Cu-Al Material and Pure Cu/Al, Mater. Sci. Forum, 2015, 817, p 374-378CrossRefGoogle Scholar
  55. 55.
    M.F.X. Muthu and V. Jayabalan, Tool Travel Speed Effects on the Microstructure of Friction Stir Welded Aluminum-Copper Joints, J. Mater. Process. Technol., 2015, 217, p 105-113CrossRefGoogle Scholar
  56. 56.
    D. Yaduwanshi, S. Pal, and S. Bag, Effect of Preheating on Mechanical Properties of Hybrid Friction Stir Welded Dissimilar Joint, in 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR) (Assam, 2014)Google Scholar
  57. 57.
    R. Sarrafi, A.H. Kokabi, M.A. Gharacheh, and B. Shalchi, Evaluation of Microstructure and Mechanical Properties of Aluminum to Copper Friction Stir Butt Welds, Frict. Stir Weld. Process., 2011, VI, p 253-264CrossRefGoogle Scholar
  58. 58.
    M. Girard, B. Huneau, C. Genevois, X. Sauvage, and G. Racineux, Friction Stir Diffusion Bonding of Dissimilar Metals, Sci. Technol. Weld. Join., 2013, 15(8), p 661-665CrossRefGoogle Scholar
  59. 59.
    W.-B. Lee, K.-S. Bang, and S.-B. Jung, Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints During Annealing, J. Alloys Compd., 2005, 390(1-2), p 212-219CrossRefGoogle Scholar
  60. 60.
    P. Eslami and A.K. Taheri, An Investigation on Diffusion Bonding of Aluminum to Copper Using Equal Channel Angular Extrusion Process, Mater. Lett., 2011, 65(12), p 1862-1864CrossRefGoogle Scholar
  61. 61.
    Z. Huiwen, C. Wei, H. Jingshan, Y. Jiuchun, and Y. Shiqin, Formation and Evolution of Intermetallic Compounds at Interfaces of Cu/Al Joints by Ultrasonic-Assisted Soldering, J. Mater. Process. Technol., 2015, 223, p 1-7CrossRefGoogle Scholar
  62. 62.
    Y. Xiao, H. Ji, M. Li, and J. Kim, Ultrasound-Assisted Brazing of Cu/Al Dissimilar Metals Using a Zn-3Al Filler Metal, Mater. Des., 2013, 52, p 740-747CrossRefGoogle Scholar
  63. 63.
    Z. Ni, H. Zhao, P. Mi, and F. Ye, Microstructure and Mechanical Performances of Ultrasonic Spot Welded Al/Cu Joints with Al 2219 Alloy Particle Interlayer, Mater. Des., 2016, 92, p 779-786CrossRefGoogle Scholar
  64. 64.
    J. Feng, X. Songbai, and D. Wei, Reliability Studies of Cu/Al Joints Brazed with Zn-Al-Ce Filler Metals, Mater. Des., 2012, 42, p 156-163CrossRefGoogle Scholar
  65. 65.
    T. Solchenbach, P. Plapper, and W. Cai, Electrical Performance of Laser Braze-Welded Aluminum-Copper Interconnects, J. Manuf. Process., 2014, 16(2), p 183-189CrossRefGoogle Scholar
  66. 66.
    T. Solchenbach and P. Plapper, Mechanical Characteristics of Laser Braze-welded Aluminium-Copper Connections, Opt. Laser Technol., 2013, 54, p 249-256CrossRefGoogle Scholar
  67. 67.
    I. Bhamji, R.J. Moat, M. Preuss, P.L. Threadgill, A.C. Addison, and M.J. Peel, Linear Friction Welding of Aluminium to Copper, Sci. Technol. Weld. Join., 2013, 17(4), p 314-320CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Si-Lin Fu
    • 1
  • Cheng-Xin Li
    • 1
  • Ying-Kang Wei
    • 1
  • Xiao-Tao Luo
    • 1
  • Guan-Jun Yang
    • 1
  • Chang-Jiu Li
    • 1
  • Jing-Long Li
    • 2
  1. 1.School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations