Skip to main content

Advertisement

Log in

Novel Method of Aluminum to Copper Bonding by Cold Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spray bonding (CSB) has been proposed as a new method for joining aluminum and copper. At high speeds, solid Al particles impacted the groove between the two substrates to form a bond between Al and Cu. Compared to traditional welding technologies, CSB does not form distinct intermetallic compounds. Large stainless steel particles were introduced into the spray powders as in situ shot peen particles to create a dense Al deposit and to improve the bond strength of joints. It was discovered that introducing shot peen particles significantly improved the flattening ratio of the deposited Al particles. Increasing the proportion of shot peen particles from 0 to 70 vol.% decreased the porosity of the deposits from 12.4 to 0.2%, while the shear strength of joints significantly increased. The tensile test results of the Al-Cu joints demonstrated that cracks were initiated at the interface between the Al and the deposit. The average tensile strength was 71.4 MPa and could reach 81% of the tensile strength of pure Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. S.D. Meshram, T. Mohandas, and G.M. Reddy, Friction Welding of Dissimilar Pure Metals, J. Mater. Process. Technol., 2007, 184(1-3), p 330-337

    Article  Google Scholar 

  2. K.P. Mehta and V.J. Badheka, A Review on Dissimilar Friction Stir Welding of Copper to Aluminum: Process, Properties, and Variants, Mater. Manuf. Process., 2015, 31(3), p 233-254

    Article  Google Scholar 

  3. Z. Sun and R. Karppi, The Application of Electron Beam Welding for the Joining of Dissimilar Metals: An Overview, J. Mater. Process. Technol., 1996, 59(3), p 257-267

    Article  Google Scholar 

  4. J.E. Lee, D.H. Bae, W.S. Chung, K.H. Kim, J.H. Lee, and Y.R. Cho, Effects of Annealing on the Mechanical and Interface Properties of Stainless Steel/Aluminum/Copper Clad-Metal Sheets, J. Mater. Process. Technol., 2007, 187-188, p 546-549

    Article  Google Scholar 

  5. J.-P. Immarigeon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, and J.C. Beddoes, Lightweight Materials for Aircraft Applications, Trans. Indian Inst. Met., 2016, 70(1), p 125-131

    Google Scholar 

  6. A. Safarzadeh, M. Paidar, and H. Youzbashi-zade, A Study on the Effects Bonding Temperature and Holding Time on Mechanical and Metallurgical Properties of Al-Cu Dissimilar Joining by DFW, Trans. Indian Inst. Met., 2016, 70(1), p 125-131

    Article  Google Scholar 

  7. M. Akbari, P. Bahemmat, M. Haghpanahi, and M.K. Besharati, Givi, Enhancing Metallurgical and Mechanical Properties of Friction Stir Lap Welding of Al-Cu Using Intermediate Layer, Sci. Technol. Weld. Join., 2013, 18(6), p 518-524

    Article  Google Scholar 

  8. H.J. Liu, J.J. Shen, S. Xie, Y.X. Huang, F. Cui, C. Liu, and L.Y. Kuang, Weld Appearance and Microstructural Characteristics of Friction Stir Butt Barrier Welded Joints of Aluminium Alloy to Copper, Sci. Technol. Weld. Join., 2013, 17(2), p 104-110

    Article  Google Scholar 

  9. H.J. Liu, J.J. Shen, L. Zhou, Y.Q. Zhao, C. Liu, and L.Y. Kuang, Microstructural Characterisation and Mechanical Properties of Friction Stir Welded Joints of Aluminium Alloy to Copper, Sci. Technol. Weld. Join., 2013, 16(1), p 92-98

    Article  Google Scholar 

  10. I. Galvão, J.C. Oliveira, A. Loureiro, and D.M. Rodrigues, Formation and Distribution of Brittle Structures in Friction Stir Welding of Aluminium and Copper: Influence of Shoulder Geometry, Intermetallics, 2012, 22, p 122-128

    Article  Google Scholar 

  11. J. Nishiwaki, T. Kambe, Y. Kedo, Y. Harada, S. Muraishi, and S. Kumai, Numerical Analysis of Wavy Interface Formation and Successive Temperature Change in Magnetic Pulse Welded Al/Cu Joint, Mater. Sci. Forum, 2016, 877, p 655-661

    Article  Google Scholar 

  12. W. Shi, W. Wang, and Y. Huang, Laser Micro-welding of Cu-Al Dissimilar Metals, Int. J. Adv. Manuf. Technol., 2015, 85(1-4), p 185-189

    Article  Google Scholar 

  13. P.C. Seshagiri, G. Madhusudan Reddy, K. Srinivasa Rao, M. Govinda Raju, S.S. Bhattacharya, and K. Prasad Rao, Microstructure and Mechanical Properties of Sc modified Al-Cu Alloy (AA2219) Electron Beam Welds, Sci. Technol. Weld. Join., 2013, 13(5), p 415-421

    Article  Google Scholar 

  14. B. Gulenc, Investigation of Interface Properties and Weldability of Aluminum and Copper Plates by Explosive Welding Method, Mater. Des., 2008, 29(1), p 275-278

    Article  Google Scholar 

  15. M. Sedighi and M. Honarpisheh, Experimental Study of Through-Depth Residual Stress in Explosive Welded Al-Cu-Al Multilayer, Mater. Des., 2012, 37, p 577-581

    Article  Google Scholar 

  16. H. Amani and M. Soltanieh, Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals, Metal. Mater. Trans. B, 2016, 47(4), p 2524-2534

    Article  Google Scholar 

  17. C.Z. Xia, Y.J. Li, J. Wang, and H.J. Ma, Microstructure and Phase Constitution Near Interface of Cu/Al Vacuum Brazing, Mater. Sci. Technol., 2013, 23(7), p 815-818

    Article  Google Scholar 

  18. J. Peng, S. Fukumoto, L. Brown, and N. Zhou, Image Analysis of Electrode Degradation in Resistance Spot Welding of Aluminium, Sci. Technol. Weld. Join., 2013, 9(4), p 331-336

    Article  Google Scholar 

  19. M.N. Avettand-Fenoël, R. Taillard, G. Ji, and D. Goran, Multiscale Study of Interfacial Intermetallic Compounds in a Dissimilar Al 6082-T6/Cu Friction-Stir Weld, Metal. Mater. Trans. A, 2012, 43(12), p 4655-4666

    Article  Google Scholar 

  20. I. Galvão, A. Loureiro, D. Verdera, D. Gesto, and D.M. Rodrigues, Influence of Tool Offsetting on the Structure and Morphology of Dissimilar Aluminum to Copper Friction-Stir Welds, Metal. Mater. Trans. A, 2012, 43(13), p 5096-5105

    Article  Google Scholar 

  21. P. Xue, B.L. Xiao, D.R. Ni, and Z.Y. Ma, Enhanced Mechanical Properties of Friction Stir Welded Dissimilar Al-Cu Joint by Intermetallic Compounds, Mater. Sci. Eng. A, 2010, 527(21-22), p 5723-5727

    Article  Google Scholar 

  22. C.W. Tan, Z.G. Jiang, L.Q. Li, Y.B. Chen, and X.Y. Chen, Microstructural Evolution and Mechanical Properties of Dissimilar Al-Cu Joints Produced by Friction Stir Welding, Mater. Des., 2013, 51, p 466-473

    Article  Google Scholar 

  23. P. Xue, D.R. Ni, D. Wang, B.L. Xiao, and Z.Y. Ma, Effect of Friction Stir Welding Parameters on the Microstructure and Mechanical Properties of the Dissimilar Al-Cu Joints, Mater. Sci. Eng. A, 2011, 528(13-14), p 4683-4689

    Article  Google Scholar 

  24. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  Google Scholar 

  25. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 368(1-2), p 222-230

    Article  Google Scholar 

  26. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  27. R. Ghelichi, D. MacDonald, S. Bagherifard, H. Jahed, M. Guagliano, and B. Jodoin, Microstructure and Fatigue Behavior of Cold Spray Coated Al5052, Acta Mater., 2012, 60(19), p 6555-6561

    Article  Google Scholar 

  28. W.Y. Li, D.D. Zhang, C.J. Huang, S. Yin, M. Yu, F.F. Wang, and H.L. Liao, Modelling of Impact Behaviour of Cold Spray Particles: Review, Surf. Eng., 2014, 30(5), p 299-308

    Article  Google Scholar 

  29. X. Meng, J. Zhang, J. Zhao, Y. Liang, and Y. Zhang, Influence of Gas Temperature on Microstructure and Properties of Cold Spray 304SS Coating, J. Mater. Sci. Technol., 2011, 27(9), p 809-815

    Article  Google Scholar 

  30. V.K. Champagne, M.K. West, M. Reza Rokni, T. Curtis, V. Champagne, and B. McNally, Joining of Cast ZE41A Mg to Wrought 6061 Al by the Cold Spray Process and Friction Stir Welding, J. Therm. Spray Technol., 2015, 25(1-2), p 143-159

    Article  Google Scholar 

  31. X.-T. Luo, C.-X. Li, F.-L. Shang, G.-J. Yang, Y.-Y. Wang, and C.-J. Li, High Velocity Impact Induced Microstructure Evolution During Deposition of Cold Spray Coatings: A Review, Surf. Coat. Technol., 2014, 254, p 11-20

    Article  Google Scholar 

  32. H. Bu, M. Yandouzi, C. Lu, D. MacDonald, and B. Jodoin, Cold Spray Blended Al+Mg17Al12 Coating for Corrosion Protection of AZ91D Magnesium alloy, Surf. Coat. Technol., 2012, 207, p 155-162

    Article  Google Scholar 

  33. E. Sansoucy, P. Marcoux, L. Ajdelsztajn, and B. Jodoin, Properties of SiC-Reinforced Aluminum Alloy Coatings Produced by the Cold Gas Dynamic Spraying Process, Surf. Coat. Technol., 2008, 202(16), p 3988-3996

    Article  Google Scholar 

  34. Y.-K. Wei, X.-T. Luo, C.-X. Li, and C.-J. Li, Optimization of in situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating, J. Therm. Spray Technol., 2016, 26(1-2), p 173-183

    Article  Google Scholar 

  35. X.-T. Luo, Y.-K. Wei, Y. Wang, and C.-J. Li, Microstructure and Mechanical Property of Ti and Ti6Al4 V Prepared by an in situ Shot Peening Assisted Cold Spraying, Mater. Des., 2015, 85, p 527-533

    Article  Google Scholar 

  36. Z. Arabgol, H. Assadi, T. Schmidt, F. Gärtner, and T. Klassen, Analysis of Thermal History and Residual Stress in Cold-Sprayed Coatings, J. Therm. Spray Technol., 2013, 23(1-2), p 84-90

    Article  Google Scholar 

  37. S. Cho, K. Takagi, H. Kwon, D. Seo, K. Ogawa, K. Kikuchi, and A. Kawasaki, Multi-walled Carbon Nanotube-reinforced Copper Nanocomposite Coating Fabricated by Low-pressure Cold Spray Process, Surf. Coat. Technol., 2012, 206(16), p 3488-3494

    Article  Google Scholar 

  38. S. Dosta, M. Couto, and J.M. Guilemany, Cold Spray Deposition of a WC-25Co Cermet onto Al7075-T6 and Carbon Steel Substrates, Acta Mater., 2013, 61(2), p 643-652

    Article  Google Scholar 

  39. H. Lee and K. Ko, Effect of SiC Particle Size on Cold Sprayed Al-SiC Composite Coatings, Surf. Eng., 2013, 25(8), p 606-611

    Article  Google Scholar 

  40. K. Spencer, D.M. Fabijanic, and M.X. Zhang, The Use of Al-Al2O3 Cold Spray Coatings to Improve the Surface Properties of Magnesium Alloys, Surf. Coat. Technol., 2009, 204(3), p 336-344

    Article  Google Scholar 

  41. C.-J. Li and W.-Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167(2-3), p 278-283

    Article  Google Scholar 

  42. B.S. Deforce, T.J. Eden, and J.K. Potter, Cold Spray Al-5% Mg Coatings for the Corrosion Protection of Magnesium Alloys, J. Therm. Spray Technol., 2011, 20(6), p 1352-1358

    Article  Google Scholar 

  43. M. Diab, X. Pang, and H. Jahed, The Effect of Pure Aluminum Cold Spray Coating on Corrosion and Corrosion Fatigue of Magnesium (3% Al-1% Zn) Extrusion, Surf. Coat. Technol., 2016, 309, p 423-435

    Article  Google Scholar 

  44. E. Irissou, J.G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16(5-6), p 661-668

    Article  Google Scholar 

  45. G. Li, X.-F. Wang, and W.-Y. Li, Effect of Different Incidence Angles on Bonding Performance in Cold Spraying, Trans. Nonferr. Met. Soc. Chin., 2007, 17(1), p 116-121

    Article  Google Scholar 

  46. C.-J. Li, W.-Y. Li, Y.-Y. Wang, G.-J. Yang, and H. Fukanuma, A Theoretical Model for Prediction of Deposition Efficiency in Cold Spraying, Thin Solid Films, 2005, 489(1-2), p 79-85

    Article  Google Scholar 

  47. C. Otten, U. Reisgen, and M. Schmachtenberg, Electron Beam Welding of Aluminum to Copper: Mechanical Properties and Their Relation to Microstructure, Weld. World, 2015, 60(1), p 21-31

    Article  Google Scholar 

  48. Q.-Z. Zhang, W.-B. Gong, and W. Liu, Microstructure and Mechanical Properties of Dissimilar Al-Cu Joints by Friction Stir Welding, Trans. Nonferr. Met. Soc. Chin., 2015, 25(6), p 1779-1786

    Article  Google Scholar 

  49. S.A. Khodir, M.M.Z. Ahmed, E. Ahmed, S.M.R. Mohamed, and H. Abdel-Aleem, Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints, J. Mater. Eng. Perform., 2016, 25(11), p 4637-4648

    Article  Google Scholar 

  50. P. Xue, B. Xiao and Z. Ma, Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Al-Cu Thin Plate Joints, in 10th International Symposium on Friction Stir Welding (Beijing, 2014)

  51. A. Esmaeili, M.K.B. Givi, and H.R.Z. Rajani, Investigation of Weld Defects in Dissimilar Friction stir Welding of Aluminium to Brass by Radiography, Sci. Technol. Weld. Join., 2013, 17(7), p 539-543

    Article  Google Scholar 

  52. A. Esmaeili, H.R. Zareie Rajani, M. Sharbati, M.K.B. Givi, and M. Shamanian, The Role of Rotation Speed on Intermetallic Compounds Formation and Mechanical Behavior of Friction Stir Welded Brass/Aluminum 1050 Couple, Intermetallics, 2011, 19(11), p 1711-1719

    Article  Google Scholar 

  53. A. Esmaeili, M.K.B. Givi, and H.R.Z. Rajani, A Metallurgical and Mechanical Study on Dissimilar Friction Stir welding of Aluminum 1050 to Brass (CuZn30), Mater. Sci. Eng. A, 2011, 528(22-23), p 7093-7102

    Article  Google Scholar 

  54. L. Qiao, H.H. Yang, and J.F. Sheng, Comparison Study on Friction-Welded Cu-Al Material and Pure Cu/Al, Mater. Sci. Forum, 2015, 817, p 374-378

    Article  Google Scholar 

  55. M.F.X. Muthu and V. Jayabalan, Tool Travel Speed Effects on the Microstructure of Friction Stir Welded Aluminum-Copper Joints, J. Mater. Process. Technol., 2015, 217, p 105-113

    Article  Google Scholar 

  56. D. Yaduwanshi, S. Pal, and S. Bag, Effect of Preheating on Mechanical Properties of Hybrid Friction Stir Welded Dissimilar Joint, in 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR) (Assam, 2014)

  57. R. Sarrafi, A.H. Kokabi, M.A. Gharacheh, and B. Shalchi, Evaluation of Microstructure and Mechanical Properties of Aluminum to Copper Friction Stir Butt Welds, Frict. Stir Weld. Process., 2011, VI, p 253-264

    Article  Google Scholar 

  58. M. Girard, B. Huneau, C. Genevois, X. Sauvage, and G. Racineux, Friction Stir Diffusion Bonding of Dissimilar Metals, Sci. Technol. Weld. Join., 2013, 15(8), p 661-665

    Article  Google Scholar 

  59. W.-B. Lee, K.-S. Bang, and S.-B. Jung, Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints During Annealing, J. Alloys Compd., 2005, 390(1-2), p 212-219

    Article  Google Scholar 

  60. P. Eslami and A.K. Taheri, An Investigation on Diffusion Bonding of Aluminum to Copper Using Equal Channel Angular Extrusion Process, Mater. Lett., 2011, 65(12), p 1862-1864

    Article  Google Scholar 

  61. Z. Huiwen, C. Wei, H. Jingshan, Y. Jiuchun, and Y. Shiqin, Formation and Evolution of Intermetallic Compounds at Interfaces of Cu/Al Joints by Ultrasonic-Assisted Soldering, J. Mater. Process. Technol., 2015, 223, p 1-7

    Article  Google Scholar 

  62. Y. Xiao, H. Ji, M. Li, and J. Kim, Ultrasound-Assisted Brazing of Cu/Al Dissimilar Metals Using a Zn-3Al Filler Metal, Mater. Des., 2013, 52, p 740-747

    Article  Google Scholar 

  63. Z. Ni, H. Zhao, P. Mi, and F. Ye, Microstructure and Mechanical Performances of Ultrasonic Spot Welded Al/Cu Joints with Al 2219 Alloy Particle Interlayer, Mater. Des., 2016, 92, p 779-786

    Article  Google Scholar 

  64. J. Feng, X. Songbai, and D. Wei, Reliability Studies of Cu/Al Joints Brazed with Zn-Al-Ce Filler Metals, Mater. Des., 2012, 42, p 156-163

    Article  Google Scholar 

  65. T. Solchenbach, P. Plapper, and W. Cai, Electrical Performance of Laser Braze-Welded Aluminum-Copper Interconnects, J. Manuf. Process., 2014, 16(2), p 183-189

    Article  Google Scholar 

  66. T. Solchenbach and P. Plapper, Mechanical Characteristics of Laser Braze-welded Aluminium-Copper Connections, Opt. Laser Technol., 2013, 54, p 249-256

    Article  Google Scholar 

  67. I. Bhamji, R.J. Moat, M. Preuss, P.L. Threadgill, A.C. Addison, and M.J. Peel, Linear Friction Welding of Aluminium to Copper, Sci. Technol. Weld. Join., 2013, 17(4), p 314-320

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Natural Science Foundation of China (No. 51761145108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, SL., Li, CX., Wei, YK. et al. Novel Method of Aluminum to Copper Bonding by Cold Spray. J Therm Spray Tech 27, 624–640 (2018). https://doi.org/10.1007/s11666-018-0707-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0707-1

Keywords

Navigation