Advertisement

Journal of Thermal Spray Technology

, Volume 27, Issue 3, pp 446–455 | Cite as

Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates

  • R. Drehmann
  • T. Grund
  • T. Lampke
  • B. Wielage
  • C. Wüstefeld
  • M. Motylenko
  • D. Rafaja
Peer Reviewed

Abstract

The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.

Keywords

adhesion aluminum ceramics cold gas spraying (CGS) heteroepitaxy HRTEM tensile bond strength 

Notes

Acknowledgments

The authors gratefully thank the German Research Foundation (DFG) for financing the presented work under the project numbers WI688/95-2 and RA1050/15-2. M. Motylenko thanks the DFG for financial support of the subproject A05, which is a part of the Collaborative Research Centre SFB 920 “Multi-Functional Filters for Metal Melt Filtration—A Contribution towards Zero Defect Materials.”

References

  1. 1.
    B. Wielage, T. Grund, C. Rupprecht, and S. Kümmel, New Method for Producing Power Electronic Circuit Boards by Cold-Gas Spraying and Investigation of Adhesion Mechanisms, Surf. Coat. Technol., 2010, 205(4), p 1115-1118CrossRefGoogle Scholar
  2. 2.
    K.-R. Donner, F. Gärtner, and T. Klassen, Metallization of Thin Al2O3 Layers in Power Electronics Using Cold Gas Spraying, J. Therm. Spray Technol., 2011, 20(1–2), p 299-306CrossRefGoogle Scholar
  3. 3.
    P.C. King, S.H. Zahiri, M. Jahedi, and J. Friend, Cold Spray Electroding of Piezoelectric Ceramic, Mater. Forum, 2007, 31, p 116-119Google Scholar
  4. 4.
    S. Marx, A. Paul, A. Köhler, and G. Hüttl, Cold Spraying: Innovative Layers for New Applications, J. Therm. Spray Technol., 2006, 15(2), p 177-183CrossRefGoogle Scholar
  5. 5.
    W. Tillmann, Fügen, Technische Keramik, W. Kollenberg, Ed., Vulkan-Verlag, Essen, 2004, p 445-457 Google Scholar
  6. 6.
    A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold Spray Technology, A. Papyrin, Ed., Elsevier, Amsterdam, 2007, Google Scholar
  7. 7.
    P. Fauchais and G. Montavon, Thermal and Cold Spray: Recent Developments, Key Eng. Mater., 2008, 384, p 1-59CrossRefGoogle Scholar
  8. 8.
    H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying—A Materials Perspective, Acta Mater., 2016, 116, p 382-407CrossRefGoogle Scholar
  9. 9.
    D. Rafaja, T. Schucknecht, V. Klemm, A. Paul, and H. Berek, Microstructural Characterisation of Titanium Coatings Deposited Using Cold Gas Spraying on Al2O3 Substrates, Surf. Coat. Technol., 2009, 203, p 3206-3213CrossRefGoogle Scholar
  10. 10.
    R. Drehmann, T. Grund, T. Lampke, B. Wielage, K. Manygoats, T. Schucknecht, and D. Rafaja, Splat Formation and Adhesion Mechanisms of Cold-Sprayed Al Coatings on Al2O3 Substrates, J. Therm. Spray Technol., 2014, 23(1–2), p 68-75CrossRefGoogle Scholar
  11. 11.
    R. Drehmann, T. Grund, T. Lampke, B. Wielage, K. Manygoats, T. Schucknecht, and D. Rafaja, Interface Characterization and Bonding Mechanisms of Cold Gas-Sprayed Al Coatings on Ceramic Substrates, J. Therm. Spray Technol., 2015, 24(1), p 92-99Google Scholar
  12. 12.
    H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394CrossRefGoogle Scholar
  13. 13.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688CrossRefGoogle Scholar
  14. 14.
    C.-J. Li, W.-Y. Li, and Y.-Y. Wang, Formation of Metastable Phases in Cold-Sprayed Soft Metallic Deposit, Surf. Coat. Technol., 2005, 198(1–3), p 469-473CrossRefGoogle Scholar
  15. 15.
    A. Wank, B. Wielage, H. Podlesak, and T. Grund, High-Resolution Microstructural Investigations of Interfaces Between Light Metal Alloy Substrates and Cold Gas-Sprayed Coatings, J. Therm. Spray Technol., 2006, 15(2), p 280-283CrossRefGoogle Scholar
  16. 16.
    J. Vlcek, L. Gimeno, H. Huber, and E. Lugscheider, A Systematic Approach to Material Eligibility for the Cold-Spray Process, J. Therm. Spray Technol., 2005, 14(1), p 125-133CrossRefGoogle Scholar
  17. 17.
    P.C. King, S.H. Zahiri, and M. Jahedi, Focused Ion Beam Micro-Dissection of Cold-Sprayed Particles, Acta Mater., 2008, 56(19), p 5617-5626CrossRefGoogle Scholar
  18. 18.
    D. Rafaja, C. Wüstefeld, C. Baehtz, V. Klemm, M. Dopita, M. Motylenko, C. Michotte, and M. Kathrein, Effect of Internal Interfaces on Hardness and Thermal Stability of Nanocrystalline Ti0.5Al0.5N Coatings, Metall. Mater. Trans. A, 2011, 42, p 559-569CrossRefGoogle Scholar
  19. 19.
    J.A. Hines and K.S. Vecchio, Recrystallization Kinetics Within Adiabatic Shear Bands, Acta Mater., 1997, 45(2), p 635-649CrossRefGoogle Scholar
  20. 20.
    D.A. Hughes and N. Hansen, High Angle Boundaries Formed by Grain Subdivision Mechanisms, Acta Mater., 1997, 45(9), p 3871-3886CrossRefGoogle Scholar
  21. 21.
    W.B. Choi, L. Li, V. Luzin, R. Neiser, T. Gnäupel-Herold, H.J. Prask, S. Sampath, and A. Gouldstone, Integrated Characterization of Cold Sprayed Aluminum Coatings, Acta Mater., 2007, 55, p 857-866CrossRefGoogle Scholar
  22. 22.
    S.-Y. Chang, Y.-C. Huang, and C.-H. Chang, Effect of Residual Stress on Mechanical Properties and Interface Adhesion Strength of SiN Thin Films, Thin Solid Films, 2009, 517(17), p 4857-4861CrossRefGoogle Scholar
  23. 23.
    T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742CrossRefGoogle Scholar
  24. 24.
    T. van Steenkiste and J.R. Smith, Evaluation of Coatings Produced via Kinetic and Cold Spray Processes, J. Therm. Spray Technol., 2004, 13(2), p 274-282CrossRefGoogle Scholar
  25. 25.
    K. Kang, S. Yoon, Y. Ji, and C. Lee, Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process, Mater. Sci. Eng., A, 2008, 486, p 300-307CrossRefGoogle Scholar
  26. 26.
    R.W. Klopp, R.J. Clifton, and T.G. Shawki, Pressure-Shear Impact and the Dynamic Viscoplastic Response of Metals, Mech. Mater., 1985, 4(3–4), p 375-385CrossRefGoogle Scholar
  27. 27.
    T. Klassen, F. Gärtner and H. Assadi, Process Science of Cold Spray, High Pressure Cold Spray: Principles and Applications, C.M. Kay and J. Karthikeyan, Ed., ASM International, Materials Park, OH, 2016, p 17-65 Google Scholar
  28. 28.
    C. Wüstefeld, D. Rafaja, M. Motylenko, C. Ullrich, R. Drehmann, T. Grund, T. Lampke, and B. Wielage, Local Heteroepitaxy as an Adhesion Mechanism in Aluminium Coatings Cold Gas Sprayed on AlN Substrates, Acta Mater., 2017, 128, p 418-427CrossRefGoogle Scholar
  29. 29.
    S.W. King, J.P. Barnak, M.D. Bremser, K.M. Tracy, C. Ronning, R.F. Davis, and R.J. Nemanich, Cleaning of AlN and GaN Surfaces, J. Appl. Phys., 1998, 84(9), p 5248-5260CrossRefGoogle Scholar
  30. 30.
    R. Dalmau, R. Collazo, S. Mita, and Z. Sitar, X-ray Photoelectron Spectroscopy Characterization of Aluminum Nitride Surface Oxides: Thermal and Hydrothermal Evolution, J. Electron. Mater., 2007, 36(4), p 414-419CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • R. Drehmann
    • 1
  • T. Grund
    • 1
  • T. Lampke
    • 1
  • B. Wielage
    • 1
  • C. Wüstefeld
    • 2
  • M. Motylenko
    • 2
  • D. Rafaja
    • 2
  1. 1.Institute of Materials Science and EngineeringChemnitz University of TechnologyChemnitzGermany
  2. 2.Institute of Materials ScienceTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations