Skip to main content
Log in

Suspension Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Individual capsule-like polyimide splats have been fabricated by suspension flame spray, and the polyimide splat exhibits hollow structure with an inner pore and a tiny hole on its top surface. Enwrapping of 200-1000-nm copper particles inside the splats is accomplished during the deposition for constrained release of copper for antifouling performances. Antifouling testing of the coatings by 24-h exposure to Escherichia coli-containing artificial seawater shows that the Cu-doped splat already prohibits effectively attachment of the bacteria. The prohibited adhesion of bacteria obviously impedes formation and further development of bacterial biofilm. This capsulated splat with releasing and loading of copper biocides results in dual-functional structures bearing both release-killing and contact-killing mechanisms. The suspension flame spray route and the encapsulated structure of the polyimide-Cu coatings would open a new window for designing and constructing marine antifouling layers for long-term applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.A. Callow and M.E. Callow, Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings, Nat. Commun., 2011, 2, p 244

    Article  Google Scholar 

  2. M.E. Callow and J.A. Callow, Marine Biofouling: A Sticky Problem, Biologist, 2002, 49(1), p 1-5

    Google Scholar 

  3. I. Fitridge, T. Dempster, J. Guenther, and R. de Nys, The Impact and Control of Biofouling in Marine Aquaculture: A Review, Biofouling, 2012, 28(7), p 649-669

    Article  Google Scholar 

  4. L.D. Chambers, K.R. Stokes, F.C. Walsh, and R.J.K. Wood, Modern Approaches to Marine Antifouling Coatings, Surf. Coat. Technol., 2006, 201(6), p 3642-3652

    Article  Google Scholar 

  5. I. Banerjee, R.C. Pangule, and R.S. Kane, Antifouling Coatings: Recent Developments in the Design of Surfaces that Prevent Fouling by Proteins, Bacteria, and Marine Organisms, Adv. Mater., 2011, 23(6), p 690-718

    Article  Google Scholar 

  6. D.M. Yebra, S. Kiil, and K. Dam-Johansen, Antifouling Technology-Past, Present and Future Steps Towards Efficient and Environmentally Friendly Antifouling Coatings, Prog. Org. Coat., 2004, 50(2), p 75-104

    Article  Google Scholar 

  7. V.R.S.S. Brito, I.N. Bastos, and H.R.M. Costa, Corrosion Resistance and Characterization of Metallic Coatings Deposited by Thermal Spray on Carbon Steel, Mater. Des., 2012, 41, p 282-288

    Article  Google Scholar 

  8. S. Kuroda, J. Kawakita, and M. Takemoto, An 18-Year Exposure Test of Thermal-Sprayed Zn, Al, and Zn-Al Coatings in Marine Environment, Corrosion, 2006, 62(7), p 635-647

    Article  Google Scholar 

  9. J. Huang, Y. Liu, J.H. Yuan, and H. Li, Al/Al2O3 Composite Coating Deposited by Flame Spraying for Marine Applications: Alumina Skeleton Enhances Anti-corrosion and Wear Performances, J. Therm. Spray Technol., 2014, 23(4), p 676-683

    Article  Google Scholar 

  10. Z.M. Jia, Y. Liu, Y.Y. Wang, Y.Y. Gong, P.P. Jin, X.K. Suo, and H. Li, Flame Spray Fabrication of Polyethylene-Cu Composite Coatings with Enwrapped Structures: A New Route for Constructing Antifouling Layers, Surf. Coat. Technol., 2017, 309, p 872-879

    Article  Google Scholar 

  11. N. Voulvoulis, M.D. Scrimshaw, and J.N. Lester, Alternative Antifouling Biocides, Appl. Organomet. Chem., 1999, 13(3), p 135-143

    Article  Google Scholar 

  12. M.D. Yebra, S. Kiil, C.E. Weinell, and K. Dam-Johansen, Presence and Effects of Marine Microbial Biofilms on Biocide-Based Antifouling Paints, Biofouling, 2006, 22(1), p 33-41

    Article  Google Scholar 

  13. R. Zarzuela, M. Carbú, M.L.A. Gil, J.M. Cantoral, and M.J. Mosquera, CuO/SiO2 Nanocomposites: A Multifunctional Coating for Application on Building Stone, Mater. Des., 2017, 114, p 364-372

    Article  Google Scholar 

  14. X. Wei, Z. Yang, Y. Wang, S.L. Tay, and W. Gao, Polymer Antimicrobial Coatings with Embedded Fine Cu and Cu Salt Particles, Appl. Microbiol. Biotechnol., 2014, 98(14), p 6265-6274

    Article  Google Scholar 

  15. S. Jiang, T. Sreethawong, S.S.C. Lee, M.B.J. Low, K.Y. Win, A.M. Brzozowska, S.L.M. Teo, G.J. Vancso, D. Janczewski, and M.Y. Han, Fabrication of Copper Nanowire Films and Their Incorporation into Polymer Matrices for Antibacterial and Marine Antifouling Applications, Adv. Mater. Interfaces, 2015, 2(3), p 1400483

    Article  Google Scholar 

  16. K.C. Anyaogu, A.V. Fedorov, and D.C. Neckers, Synthesis, Characterization, and Antifouling Potential of Functionalized Copper Nanoparticles, Langmuir, 2008, 24(8), p 4340-4346

    Article  Google Scholar 

  17. M.J. Vucko, P.C. King, A.J. Poole, C. Carl, M.Z. Jahedi, and R. de Nys, Cold Spray Metal Embedment: An Innovative Antifouling Technology, Biofouling, 2012, 28(3), p 239-248

    Article  Google Scholar 

  18. Y. Liu, P. Guo, X.Y. He, L. Li, A.Y. Wang, and H. Li, Developing Transparent Copper-Doped Diamond-Like Carbon Films for Marine Antifouling Applications, Diam. Relat. Mater., 2016, 69, p 144-151

    Article  Google Scholar 

  19. T. Geiger, P. Delavy, R. Hany, J. Schleuniger, and M. Zinn, Encapsulated Zosteric Acid Embedded in Poly [3-hydroxyalkanoate] Coatings-Protection against Biofouling, Polym. Bull., 2004, 52(1), p 65-72

    Article  Google Scholar 

  20. L. Nordstierna, A.A. Abdalla, M. Masuda, G. Skarnemark, and M. Nydén, Molecular Release from Painted Surfaces: Free and Encapsulated Biocides, Prog. Org. Coat., 2010, 69(1), p 45-48

    Article  Google Scholar 

  21. J. Cui, M.P. van Koeverden, M. Müllner, K. Kempe, and F. Caruso, Emerging Methods for the Fabrication of Polymer Capsules, Adv. Colloid Interface, 2014, 207, p 14-31

    Article  Google Scholar 

  22. A.P. Esser-Kahn, S.A. Odom, N.R. Sottos, S.R. White, and J.S. Moore, Triggered Release from Polymer Capsules, Macromolecules, 2011, 44(14), p 5539-5553

    Article  Google Scholar 

  23. Z. Li, D. Lee, X. Sheng, R.E. Cohen, and M.F. Rubner, Two-Level Antibacterial Coating with Both Release-Killing and Contact-Killing Capabilities, Langmuir, 2006, 22(24), p 9820-9823

    Article  Google Scholar 

  24. Y. Liu, X.Q. Suo, Z. Wang, Y.F. Gong, X. Wang, and Hua Li, Developing Polyimide-Copper Antifouling Coatings with Capsule Structures for Sustainable Release of Copper, Mater. Des., 2017, 130, p 285-293

    Article  Google Scholar 

  25. Y. Zhao, J.J. Zhu, J.M. Hong, N.S. Bian, and H.Y. Chen, Microwave-Induced Polyol-Process Synthesis of Copper and Copper Oxide Nanocrystals with Controllable Morphology, Eur. J. Inorg. Chem., 2004, 2004(20), p 4072-4080

    Article  Google Scholar 

  26. C.Y. Chiang, K. Aroh, and S.H. Ehrman, Copper Oxide Nanoparticle Made by Flame Spray Pyrolysis for Photoelectrochemical Water Splitting-Part I. CuO Nanoparticle Preparation, Int. J. Hydrog. Energy, 2012, 37(6), p 4871-4879

    Article  Google Scholar 

  27. G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, and R.P. Allaker, Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications, Int. J. Antimicrob. Agents, 2009, 33(6), p 587-590

    Article  Google Scholar 

  28. D.T. Clausi and W.J. Koros, Formation of Defect-Free Polyimide Hollow Fiber Membranes for Gas Separations, J. Membr. Sci., 2000, 167(1), p 79-89

    Article  Google Scholar 

  29. Y. Zhu, Y. Ma, Q. Yu, J.X. Wei, and J. Hu, Preparation of pH-Sensitive Core-Shell Organic Corrosion Inhibitor and Its Release Behavior in Simulated Concrete Pore Solutions, Mater. Des., 2017, 119, p 254-262

    Article  Google Scholar 

  30. J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, and S. Mukherji, Strain Specificity in Antimicrobial Activity of Silver and Copper Nanoparticles, Acta Biomater., 2008, 4(3), p 707-716

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant # 31500772, 41476064 and 21705158) and Key Research and Development Program of Zhejiang Province (Grant # 2017C01003 and 2015C01036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, X., Suo, X. et al. Suspension Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications. J Therm Spray Tech 27, 98–105 (2018). https://doi.org/10.1007/s11666-017-0653-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0653-3

Keywords

Navigation