Skip to main content

Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates

Abstract

Introduction of suspension and solution plasma spraying led to a breakthrough in the deposition of yttria-stabilized zirconia (YSZ) coatings and enabled preparation of new types of layers. However, their deposition with high feed rates needed, for example, for the deposition of thermal barrier coatings (TBCs) on large-scale components, is still challenging. In this study, possibility of high-throughput plasma spraying of YSZ coatings is demonstrated for the latest generation of high-enthalpy hybrid water-stabilized plasma (WSP-H) torch technology. The results show that microstructure of the coatings prepared by WSP-H may be tailored for specific applications by the choice of deposition conditions, in particular formulation of the liquid feedstock. Porous and columnar coatings with low thermal conductivity (0.5-0.6 W/mK) were prepared from commercial ethanol-based suspension. Dense vertically cracked coatings with higher thermal conductivity but also higher internal cohesion were deposited from suspension containing ethanol/water mixture and coarser YSZ particles. Spraying of solution formulated from diluted zirconium acetate and yttrium nitrate hexahydrate led also to the successful deposition of YSZ coating combining regions of porous and denser microstructure and providing both low thermal conductivity and improved cohesion of the coating. Enthalpy content, liquid-plasma interaction and coating buildup mechanisms are also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coatings Technol., 2009, 203(19), p 2807-2829

    Article  Google Scholar 

  2. 2.

    A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vassen, and D. Stöver, Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20(4), p 677-695

    Article  Google Scholar 

  3. 3.

    P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239

    Article  Google Scholar 

  4. 4.

    P. Fauchais, M. Vardelle, S. Goutier, and A. Vardelle, Key Challenges and Opportunities in Suspension and Solution Plasma Spraying, Plasma Chem. Plasma Process., 2014, 35(3), p 511-525

    Article  Google Scholar 

  5. 5.

    P. Fauchais, M. Vardelle, A. Vardelle, and S. Goutier, What Do We Know, What Are the Current Limitations of Suspension Plasma Spraying?, J. Therm. Spray Technol., 2015, 24(7), p 1120-1129

    Article  Google Scholar 

  6. 6.

    A. Bacciochini, F. Ben-Ettouil, E. Brousse, J. Ilavsky, G. Montavon, A. Denoirjean, S. Valette, and P. Fauchais, Quantification of Void Networks of as-Sprayed and Annealed Nanostructured Yttria-Stabilized Zirconia (YSZ) Deposits Manufactured by Suspension Plasma Spraying, Surf. Coatings Technol., 2010, 205(3), p 683-689

    Article  Google Scholar 

  7. 7.

    P. Fauchais, G. Montavon, R. S. Lima, and B. R. Marple, Engineering a New Class of Thermal Spray Nano-Based Microstructures from Agglomerated Nanostructured Particles, Suspensions and Solutions: An Invited Review, J. Phys. D. Appl. Phys., 2011, 44(9), p 93001.

  8. 8.

    E. Meillot, R. Vert, C. Caruyer, D. Damiani, and M. Vardelle, Manufacturing Nanostructured YSZ Coatings by Suspension Plasma Spraying (SPS): Effect of Injection Parameters, J. Phys. D. Appl. Phys., 2011, 44(19), 8 pages.

  9. 9.

    S. Govindarajan, R.O. Dusane, and S.V. Joshi, In Situ Particle Generation and Splat Formation during Solution Precursor Plasma Spraying of Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2011, 94(12), p 4191-4199

    Article  Google Scholar 

  10. 10.

    K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828

    Article  Google Scholar 

  11. 11.

    E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859

    Article  Google Scholar 

  12. 12.

    T. Bhatia, A. Ozturk, L. Xie, E.H. Jordan, B.M. Cetegen, M. Gell, X. Ma, and N.P. Padture, Mechanisms of Ceramic Coating Deposition in Solution-Precursor Plasma Spray, J. Mater. Res., 2002, 17(9), p 2363-2372

    Article  Google Scholar 

  13. 13.

    S.V. Joshi and G. Sivakumar, Hybrid Processing with Powders and Solutions: A Novel Approach to Deposit Composite Coatings, J. Therm. Spray Technol., 2015, 24(7), p 1166-1186

    Article  Google Scholar 

  14. 14.

    M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17(1), p 124-135

    Article  Google Scholar 

  15. 15.

    N.P. Padture, K.W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E.H. Jordan, M. Gell, S. Jiang, T.D. Xiao, P.R. Strutt, E. García, P. Miranzo, and M.I. Osendi, Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution-Precursor Plasma Spray, Acta Mater., 2001, 49(12), p 2251-2257

    Article  Google Scholar 

  16. 16.

    F.-L. Toma, A. Potthoff, L.-M. Berger, and C. Leyens, Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review, J. Therm. Spray Technol., 2015, 24(7), p 1143-1152

    Article  Google Scholar 

  17. 17.

    N. Curry, K. VanEvery, T. Snyder, J. Susnjar, and S. Bjorklund, Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters, Coatings, 2015, 5(3), p 338-356

    Article  Google Scholar 

  18. 18.

    A. Ganvir, N. Curry, N. Markocsan, P. Nylén, and F.-L. Toma, Comparative Study of Suspension Plasma Sprayed and Suspension High Velocity Oxy-Fuel Sprayed YSZ Thermal Barrier Coatings, Surf. Coatings Technol., 2015, 268, p 70-76

    Article  Google Scholar 

  19. 19.

    A. Ganvir, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS), J. Therm. Spray Technol., 2015, 24(7), p 1195-1204

    Article  Google Scholar 

  20. 20.

    D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37(10), p 891-898

    Article  Google Scholar 

  21. 21.

    S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS Bull., 2012, 37(10), p 903-910

    Article  Google Scholar 

  22. 22.

    G. Mauer, N. Schlegel, A. Guignard, R. Vaßen, and O. Guillon, Effects of Feedstock Decomposition and Evaporation on the Composition of Suspension Plasma-Sprayed Coatings, J. Therm. Spray Technol., 2015, 24(7), p 1187-1194

    Article  Google Scholar 

  23. 23.

    G. Mauer, N. Schlegel, A. Guignard, M. O. Jarligo, S. Rezanka, A. Hospach, and R. Vaßen, Plasma Spraying of Ceramics with Particular Difficulties in Processing, J. Therm. Spray Technol., 2014, 24(1-2), p 30–37.

  24. 24.

    O. Marchand, P. Bertrand, J. Mougin, C. Comminges, M.-P. Planche, and G. Bertrand, Characterization of Suspension Plasma-Sprayed Solid Oxide Fuel Cell Electrodes, Surf. Coatings Technol., 2010, 205(4), p 993-998

    Article  Google Scholar 

  25. 25.

    M. Marr and O. Kesler, Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates, J. Therm. Spray Technol., 2012, 21(6), p 1334-1346

    Article  Google Scholar 

  26. 26.

    M. Marr, D. Waldbillig, and O. Kesler, The Influence of Process Equipment on the Properties of Suspension Plasma Sprayed Yttria-Stabilized Zirconia Coatings, J. Therm. Spray Technol., 2013, 22(2–3), p 116-124

    Article  Google Scholar 

  27. 27.

    A. Valarezo, G. Dwivedi, S. Sampath, R. Musalek, and J. Matejicek, Elastic and Anelastic Behavior of TBCs Sprayed at High-Deposition Rates, J. Therm. Spray Technol., 2014, 24(1-2), p 160-167

    Google Scholar 

  28. 28.

    Z. Tang, H. Kim, I. Yaroslavski, G. Masindo, Z. Celler, and D. Ellsworth, Novel Thermal Barrier Coatings Produced by Axial Suspension Plasma Spray, in Thermal Spray, Proceedings of the International Thermal Spray Conference, 2011, 2011, p 571-575

    Google Scholar 

  29. 29.

    S. Govindarajan, R.O. Dusane, and S.V. Joshi, Understanding the Formation of Vertical Cracks in Solution Precursor Plasma Sprayed Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2014, 97(11), p 3396-3406

    Article  Google Scholar 

  30. 30.

    R. Musalek, G. Bertolissi, J. Medricky, J. Kotlan, Z. Pala, and N. Curry, Feasibility of Suspension Spraying of Yttria-Stabilized Zirconia with Water-Stabilized Plasma Torch, Surf. Coatings Technol., 2015, 268, p 58-62

    Article  Google Scholar 

  31. 31.

    J. Kotlan, Z. Pala, R. Musalek, and P. Ctibor, On Reactive Suspension Plasma Spraying of Calcium Titanate, Ceram. Int., 2016, 42(3), p 4607-4615

    Article  Google Scholar 

  32. 32.

    R. Musalek, J. Medricky, T. Tesar, J. Kotlan, Z. Pala, F. Lukac, T. Chraska, and N. Curry, Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology, J. Therm. Spray Technol., 2017, 26(1-2), p 37-46

    Article  Google Scholar 

  33. 33.

    P. Sokolowski, P. Nylen, R. Musalek, L. Latka, S. Kozerski, D. Dietrich, T. Lampke, and L. Pawlowski, The Microstructural Studies of Suspension Plasma Sprayed Zirconia Coatings with the Use of High-Energy Plasma Torches, Surf. Coatings Technol., 2017, 318, p 250-261

    Article  Google Scholar 

  34. 34.

    P. Sokolowski, S. Bjorklund, R. Musalek, R.T. Candidato, L. Pawlowski, B. Nait-Ali, and D. Smith, Thermophysical Properties of Zirconia Coatings Obtained Using Suspension with Different Plasma Spray Torches, Surf. Coatings Technol., 2017, 318, p 28-38

    Article  Google Scholar 

  35. 35.

    R. Musalek, J. Medricky, J. Kotlan, T. Tesar, F. Lukac, P. Ctibor, K. Illkova, and T. Chraska, High Feed Rate Plasma Spraying of YSZ from Various Suspensions, in ITSC, International Thermal Spray Conference, 2017, 2017, p 36-41

    Google Scholar 

  36. 36.

    T. Tesar, R. Musalek, J. Medricky, J. Kotlan, F. Lukac, Z. Pala, P. Ctibor, T. Chraska, S. Houdkova, V. Rimal, and N. Curry, Development of Suspension Plasma Sprayed Alumina Coatings with High Enthalpy Plasma Torch, 2017, Surf. Coatings Technol., 2017, 325, p 277-288

    Article  Google Scholar 

  37. 37.

    J. Kotlan, R. Musalek, J. Medricky, T. Tesar, F. Lukac, and T. Chraska, Suspension Plasma Spraying of YAG Using WSP-H—High Enthalpic Plasma Torch, in XXX International Conference on Surface Modification Technologies (SMT30), 2016, 7 pages.

  38. 38.

    J. Matejicek, T. Kavka, G. Bertolissi, P. Ctibor, M. Vilemova, R. Musalek, and B. Nevrla, The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications, J. Therm. Spray Technol., 2013, 22(5), p 744-755

    Article  Google Scholar 

  39. 39.

    M. Hrabovsky, Thermal Plasma Generators with Water Stabilized Arc, Open Plasma Physisc J., 2009, 2(1), p 99-104

    Article  Google Scholar 

  40. 40.

    M. Hrabovsky, Generation of Thermal Plasmas in Liquid-Stabilized and Hybrid Dc-Arc Torches, Pure Appl. Chem., 2002, 74(3), p 429-433

    Article  Google Scholar 

  41. 41.

    T. Kavka, V. Kopecky, V. Sember, A. Maslani, and O. Chumak, Analysis of Plasma Jets Generated in Gas and Gas-Water Torches, High Temp. Mater. Process., 2007, 11(1), p 59-70

    Article  Google Scholar 

  42. 42.

    J. Jenista, H. Takana, H. Nishiyama, M. Bartlova, V. Aubrecht, P. Krenek, M. Hrabovsky, T. Kavka, V. Sember, and A. Maslani, Integrated Parametric Study of a Hybrid-Stabilized Argon–water Arc under Subsonic, Transonic and Supersonic Plasma Flow Regimes, J. Phys. D. Appl. Phys., 2011, 44(43), p 435204.

  43. 43.

    T. Kavka, J. Matejicek, P. Ctibor, A. Maslani, and M. Hrabovsky, Plasma Spraying of Copper by Hybrid Water-Gas DC arc plasma torch, J. Therm. Spray Technol., 2011, 20(4), p 760-774

    Article  Google Scholar 

  44. 44.

    W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys., 1961, 32(9), p 1679-1684

    Article  Google Scholar 

  45. 45.

    D. Maillet, C. Moyne, and B. Rémy, Effect of a Thin Layer on the Measurement of the Thermal Diffusivity of a Material by a Flash Method, Int. J. Heat Mass Transf., 2000, 43(21), p 4057-4060

    Article  Google Scholar 

  46. 46.

    R.E. Taylor, X. Wang, and X. Xu, Thermophysical Properties of Thermal Barrier Coatings, Surf. Coatings Technol., 1999, 120–121, p 89-95

    Article  Google Scholar 

  47. 47.

    M. Skovgaard, A. Ahniyaz, B.F. Sørensen, K. Almdal, and A. van Lelieveld, Effect of Microscale Shear Stresses on the Martensitic Phase Transformation of Nanocrystalline Tetragonal Zirconia Powders, J. Eur. Ceram. Soc., 2010, 30(13), p 2749-2755

    Article  Google Scholar 

  48. 48.

    OERLIKON METCO, Metco 204NS—8% Yttria Stabilized Zirconia Agglomerated and HOSP Thermal Spray Powders (Material Product Data Sheet), 2014, 6 pages.

  49. 49.

    P. Scardi and M. Leoni, Whole Powder Pattern Modelling, Acta Crystallogr. Sect. A Found. Crystallogr., 2002, 58(2), p 190-200

    Article  Google Scholar 

  50. 50.

    M. Hlina and M. Hrabovsky, Enthalpy Probe Diagnostics of Steam/Argon Plasma Jet, Plasma Phys. Technol., 2015, 2(2), p 142-145

    Google Scholar 

  51. 51.

    G. Mauer, A. Guignard, R. Vaßen, and D. Stöver, Process Diagnostics in Suspension Plasma Spraying, Surf. Coatings Technol., 2010, 205(4), p 961-966

    Article  Google Scholar 

  52. 52.

    R. Chidambaram Seshadri, G. Dwivedi, V. Viswanathan, and S. Sampath, Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements, J. Therm. Spray Technol., 2016, 25(8), p 1666-1683

    Article  Google Scholar 

  53. 53.

    J. Medricky, N. Curry, Z. Pala, M. Vilemova, T. Chraska, J. Johansson, and N. Markocsan, Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former, J. Therm. Spray Technol., 2015, 24(4), p 622-628

    Article  Google Scholar 

Download references

Acknowledgment

Financial support provided by Czech Science Foundation through Grant No. GA15-12145S (Physical aspects of plasma spray deposition from liquid feedstock) is gratefully acknowledged. The spraying experiments with suspension “B” were co-financed by the courtesy of National Science Centre (Poland) in the frame of grant Preludium, 2014/15/N/ST8/02660.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radek Musalek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Musalek, R., Medricky, J., Tesar, T. et al. Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates. J Therm Spray Tech 26, 1787–1803 (2017). https://doi.org/10.1007/s11666-017-0622-x

Download citation

Keywords

  • hybrid plasma torch
  • microstructure
  • solution precursor spraying
  • suspension spraying
  • thermal barrier coatings (TBCs)
  • water-stabilized plasma
  • yttria-stabilized zirconia (YSZ)