An Overview of Using Small Punch Testing for Mechanical Characterization of MCrAlY Bond Coats

Abstract

Considerable work has been carried out on overlay bond coats in the past several decades because of its excellent oxidation resistance and good adhesion between the top coat and superalloy substrate in the thermal barrier coating systems. Previous studies mainly focus on oxidation and diffusion behavior of these coatings. However, the mechanical behavior and the dominant fracture and deformation mechanisms of the overlay bond coats at different temperatures are still under investigation. Direct comparison between individual studies has not yet been achieved due to the fragmentary data on deposition processes, microstructure and, more apparently, the difficulty in accurately measuring the mechanical properties of thin coatings. One of the miniaturized specimen testing methods, small punch testing, appears to have the potential to provide such mechanical property measurements for thin coatings. The purpose of this paper is to give an overview of using small punch testing to evaluate material properties and to summarize the available mechanical properties that include the ductile-to-brittle transition and creep of MCrAlY bond coat alloys, in an attempt to understand the mechanical behavior of MCrAlY coatings over a broad temperature range.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    S. Bose, High Temperature Coatings, Elsevier, Oxford, 2007

    Google Scholar 

  2. 2.

    C.U. Hardwicke and Y.-C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Therm. Spray Technol., 2013, 22(5), p 564-576

    Article  Google Scholar 

  3. 3.

    N. Curry, N. Markocsan, X.-H. Li, A. Tricoire, and M. Dorfman, Next Generation Thermal Barrier Coatings for the Gas Turbine Industry, J. Therm. Spray Technol., 2011, 20(1), p 108-115

    Article  Google Scholar 

  4. 4.

    A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review, J. Therm. Spray Technol., 2008, 17(2), p 199-213

    Article  Google Scholar 

  5. 5.

    U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J.M. Dorvaux, M. Poulain, R. Mevrel, and M.L. Caliez, Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7(1), p 73-80

    Article  Google Scholar 

  6. 6.

    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46(5), p 505-553

    Article  Google Scholar 

  7. 7.

    B.A. Pint, I.G. Wright, and W.J. Brindley, Evaluation of Thermal Barrier Coating Systems on Novel Substrates, J. Therm. Spray Technol., 2000, 9(2), p 198-203

    Article  Google Scholar 

  8. 8.

    M. Gupta, K. Skogsberg, and P. Nylén, Influence of Topcoat-Bondcoat Interface Roughness on Stresses and Lifetime in Thermal Barrier Coatings, J. Therm. Spray Technol., 2014, 23(1), p 170-181

    Article  Google Scholar 

  9. 9.

    H. Chen, G.A. Jackson, K.T. Voisey, and D.G. McCartney, Modelling and Experimental Study on β-Phase Depletion Behaviour of HVOF Sprayed Free-Standing CoNiCrAlY Coatings During Oxidation, Surf. Coat. Technol., 2016, 291, p 34-42

    Article  Google Scholar 

  10. 10.

    H. Chen, D.G. McCartney, and K.T. Voisey, Effect of Surface Conditions on Internal Oxidation and Nitridation of HVOF MCrAlY Coatings, Mater. High Temp., 2015, 32(1-2), p 215-220

    Article  Google Scholar 

  11. 11.

    W.R. Chen, Degradation of a TBC with HVOF-CoNiCrAlY Bond Coat, J. Therm. Spray Technol., 2014, 23(5), p 876-884

    Article  Google Scholar 

  12. 12.

    Y. Bai, C. Ding, H. Li, Z. Han, B. Ding, T. Wang, and L. Yu, Isothermal Oxidation Behavior of Supersonic Atmospheric Plasma-Sprayed Thermal Barrier Coating System, J. Therm. Spray Technol., 2013, 22(7), p 1201-1209

    Article  Google Scholar 

  13. 13.

    R.D. Jackson, M.P. Taylor, H.E. Evans, and X.-H. Li, Oxidation Study of an EB-PVD MCrAlY Thermal Barrier Coating System, Oxid. Met., 2011, 76(3-4), p 259-271

    Article  Google Scholar 

  14. 14.

    A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440

    Article  Google Scholar 

  15. 15.

    J. Yang, L. Wang, D. Li, X. Zhong, H. Zhao, and S. Tao, Stress Analysis and Failure Mechanisms of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2017, 26(5), p 890-901

    Article  Google Scholar 

  16. 16.

    R. Darolia, Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects, Int. Mater. Rev., 2013, 58(6), p 315-348

    Article  Google Scholar 

  17. 17.

    L.Y. Ni, C. Liu, H. Huang, and C.G. Zhou, Thermal Cycling Behavior of Thermal Barrier Coatings with HVOF NiCrAlY Bond Coat, J. Therm. Spray Technol., 2011, 20(5), p 1133-1138

    Article  Google Scholar 

  18. 18.

    D. Naumenko, V. Shemet, L. Singheiser, and W. Quadakkers, Failure Mechanisms of Thermal Barrier Coatings on MCrAlY-Type Bondcoats Associated with the Formation of the Thermally Grown Oxide, J. Mater. Sci., 2009, 44(7), p 1687-1703

    Article  Google Scholar 

  19. 19.

    J. Toscano, D. Naumenko, A. Gil, L. Singheiser, and W.J. Quadakkers, Parameters Affecting TGO Growth Rate and the Lifetime of TBC Systems with MCrAlY-Bondcoats, Mater. Corros., 2008, 59(6), p 501-507

    Article  Google Scholar 

  20. 20.

    C. Mercer, S. Faulhaber, N. Yao, K. McIlwrath, and O. Fabrichnaya, Investigation of the Chemical Composition of the Thermally Grown Oxide Layer in Thermal Barrier Systems with NiCoCrAlY Bond Coats, Surf. Coat. Technol., 2006, 201(3-4), p 1495-1502

    Article  Google Scholar 

  21. 21.

    A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser, and W.J. Quadakkers, Effect of Surface Condition on the Oxidation Behaviour of MCrAlY Coatings, Surf. Coat. Technol., 2006, 201(7), p 3824-3828

    Article  Google Scholar 

  22. 22.

    X. Gong, Y. Yang, Y. Ma, H. Peng, and H. Guo, Microstructures and Mechanical Properties of β-NiAlHf Coated Single Crystal Superalloy, Mater. Sci. Eng. A, 2016, 673, p 39-46

    Article  Google Scholar 

  23. 23.

    U. Hermosilla, M.S.A. Karunaratne, I.A. Jones, T.H. Hyde, and R.C. Thomson, Modelling the High Temperature Behaviour of TBCs Using Sequentially Coupled Microstructural-Mechanical FE Analyses, Mater. Sci. Eng. A, 2009, 513-514, p 302-310

    Article  Google Scholar 

  24. 24.

    K.J. Hemker, B.G. Mendis, and C. Eberl, Characterizing the Microstructure and Mechanical Behavior of a Two-Phase NiCoCrAlY Bond Coat for Thermal Barrier Systems, Mater. Sci. Eng. A, 2008, 483-484, p 727-730

    Article  Google Scholar 

  25. 25.

    A. Scrivani, U. Bardi, L. Carrafiello, A. Lavacchi, F. Niccolai, and G. Rizzi, A Comparative Study of High Velocity Oxygen Fuel, Vacuum Plasma Spray, and Axial Plasma Spray for the Deposition of CoNiCrAlY Bond Coat Alloy, J. Therm. Spray Technol., 2003, 12(4), p 504-507

    Article  Google Scholar 

  26. 26.

    J.R. Nicholls, Designing Oxidation-Resistant Coatings, JOM, 2000, 52(1), p 28-35

    Article  Google Scholar 

  27. 27.

    H. Chen and D.G. McCartney, Some Aspects on Modelling of the β-Phase Depletion Behaviour Under Different Oxide Growth Kinetics in HVOF CoNiCrAlY Coatings, Surf. Coat. Technol., 2017, 313, p 107-114

    Article  Google Scholar 

  28. 28.

    J. Toscano, A. Gil, T. Hüttel, E. Wessel, D. Naumenko, L. Singheiser, and W. Quadakkers, Temperature Dependence of Phase Relationships in Different Types of MCrAlY-Coatings, Surf. Coat. Technol., 2007, 202(4), p 603-607

    Article  Google Scholar 

  29. 29.

    H. Chen, Y.Q. Si, and D.G. McCartney, An Analytical Approach to the β-Phase Coarsening Behaviour in a Thermally Sprayed CoNiCrAlY Bond Coat Alloy, J. Alloys Compd., 2017, 704, p 359-365

    Article  Google Scholar 

  30. 30.

    R.D. Noebe, R.R. Bowman, and M.V. Nathal, Physical and Mechanical Properties of the B2 Compound NiAl, Int. Mater. Rev., 1993, 38(4), p 193-232

    Article  Google Scholar 

  31. 31.

    M.P. Taylor, H.E. Evans, E.P. Busso, and Z.Q. Qian, Creep Properties of a Pt-Aluminide Coating, Acta Mater., 2006, 54(12), p 3241-3252

    Article  Google Scholar 

  32. 32.

    W. Tillmann, U. Selvadurai, and W. Luo, Measurement of the Young’s Modulus of Thermal Spray Coatings by Means of Several Methods, J. Therm. Spray Technol., 2013, 22(2), p 290-298

    Article  Google Scholar 

  33. 33.

    H. Waki, A. Oikawa, M. Kato, S. Takahashi, Y. Kojima, and F. Ono, Evaluation of the Accuracy of Young’s Moduli of Thermal Barrier Coatings Determined on the Basis of Composite Beam Theory, J. Therm. Spray Technol., 2014, 23(8), p 1291-1301

    Article  Google Scholar 

  34. 34.

    L. Wang, J.X. Ni, F. Shao, J.S. Yang, X.H. Zhong, H.Y. Zhao, C.G. Liu, S.Y. Tao, Y. Wang, and D.Y. Li, Failure Behavior of Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings Under Three-Point Bending Test via Acoustic Emission Technique, J. Therm. Spray Technol., 2017, 26(1), p 116-131

    Article  Google Scholar 

  35. 35.

    R. Musalek, O. Kovarik, J. Medricky, N. Curry, S. Bjorklund, and P. Nylen, Fatigue Testing of TBC on Structural Steel by Cyclic Bending, J. Therm. Spray Technol., 2015, 24(1), p 168-174

    Google Scholar 

  36. 36.

    H. Waki, K. Takizawa, M. Kato, and S. Takahashi, Accuracy of Young’s Modulus of Thermal Barrier Coating Layer Determined by Bending Resonance of a Multilayered Specimen, J. Therm. Spray Technol., 2016, 25(4), p 684-693

    Article  Google Scholar 

  37. 37.

    T.H. Hyde, W. Sun, and J.A. Williams, Requirements for and use of Miniature Test Specimens to Provide Mechanical and Creep Properties of Materials: a Review, Int. Mater. Rev., 2007, 52(4), p 213-255

    Article  Google Scholar 

  38. 38.

    T. Hyde and W. Sun, A novel, High-Sensitivity, Small Specimen Creep Test, J. Strain Anal. Eng. Des., 2009, 44(3), p 171-185

    Article  Google Scholar 

  39. 39.

    G.E. Lucas, Review of Small Specimen Test Techniques for Irradiation Testing, MTA, 1990, 21(5), p 1105-1119

    Article  Google Scholar 

  40. 40.

    J.P. Rouse, F. Cortellino, W. Sun, T.H. Hyde, and J. Shingledecker, Small Punch Creep Testing: Review on Modelling and Data Interpretation, Mater. Sci. Technol., 2013, 29, p 1328-1345

    Article  Google Scholar 

  41. 41.

    M. Bruchhausen, S. Holmström, I. Simonovski, T. Austin, J.M. Lapetite, S. Ripplinger, and F. de Haan, Recent Developments in Small Punch Testing: Tensile Properties and DBTT, Theor. Appl. Fract. Mech., 2016, 86A, p 2-10

    Article  Google Scholar 

  42. 42.

    P. Dymáček, Recent Developments in Small Punch Testing: Applications at Elevated Temperatures, Theor. Appl. Fract. Mech., 2016, 86A, p 25-33

    Article  Google Scholar 

  43. 43.

    M.P. Manahan, A New Postirradiation Mechanical Behavior Test-the Miniaturized Disk Bend Test, Nucl. Technol., 1983, 63(2), p 295-315

    Google Scholar 

  44. 44.

    M.P. Manahan, A.S. Argon, and O.K. Harling, The Development of a Miniaturized Disk Bend Test for the Determination of Postirradiation Mechanical-Properties, J. Nucl. Mater., 1982, 103(1-3), p 1545-1550

    Google Scholar 

  45. 45.

    X. Mao, T. Shoji, and H. Takahashi, Characterization of Fracture Behaviour in Small Punch Test by Combined Recrystallization-Etch Method and Rigid Plastic Analysis, J. Test. Eval., 1987, 15(1), p 30-37

    Article  Google Scholar 

  46. 46.

    R.C. Hurst and K. Matocha, A Renaissance in the Use of the Small Punch Testing Technique, In ASME Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2015, p. PVP2015-45095

  47. 47.

    CEN Workshop Agreement. CWA 15627:2006 E, Small punch test method for metallic materials. CEN, European Committee for Standardization, Brussels Belgium, 2006

  48. 48.

    S. Rasche and M. Kuna, Improved Small Punch Testing and Parameter Identification of Ductile to Brittle Materials, Int. J. Press. Vess. Pip., 2015, 125, p 23-34

    Article  Google Scholar 

  49. 49.

    T. Linse, M. Kuna, and H.W. Viehrig, Quantification of Brittle-Ductile Failure Behavior of Ferritic Reactor Pressure Vessel Steels Using the Small-Punch-Test and Micromechanical Damage Models, Mater. Sci. Eng. A, 2014, 614, p 136-147

    Article  Google Scholar 

  50. 50.

    K. Turba, R. Hurst, and P. Hähner, Evaluation of the Ductile-Brittle Transition Temperature in the NESC-I, Material Using Small Punch Testing, Int. J. Pressure Vessels Piping, 2013, 111-112, p 155-161

    Article  Google Scholar 

  51. 51.

    S. Dryepondt and B.A. Pint, Determination of the Ductile to Brittle Temperature Transition of Aluminide Coatings and Its Influence on the Mechanical Behavior of Coated Specimens, Surf. Coat. Technol., 2010, 205(5), p 1195-1199

    Article  Google Scholar 

  52. 52.

    X. Mao and H. Takahashi, Development of a Further-Miniaturized Specimen of 3 mm Diameter for Tem Disk (ø 3 mm) Small Punch Tests, J. Nucl. Mater., 1987, 150(1), p 42-52

    Article  Google Scholar 

  53. 53.

    C. Rodríguez, J. García, E. Cárdenas, and C. Betegón, Mechanical Properties Characterization of Heat-Affected Zone Using the Small Punch Test, Weld. J., 2010, 88(9), p 188-192

    Google Scholar 

  54. 54.

    K. Guan, L. Hua, Q. Wang, X. Zou, and M. Song, Assessment of Toughness in Long Term Service CrMo Low Alloy Steel by Fracture Toughness and Small Punch Test, Nucl. Eng. Des., 2011, 241(5), p 1407-1413

    Article  Google Scholar 

  55. 55.

    M.A. Contreras, C. RodrÍGuez, F.J. Belzunce, and C. Betegón, Use of the Small Punch Test to Determine the Ductile-to-Brittle Transition Temperature of Structural Steels, Fatigue Fract. Eng. Mater. Struct., 2008, 31(9), p 727-737

    Article  Google Scholar 

  56. 56.

    T.E. García, C. Rodríguez, F.J. Belzunce, and C. Suárez, Estimation of the Mechanical Properties of Metallic Materials by Means of the Small Punch Test, J. Alloys Compd., 2014, 582, p 708-717

    Article  Google Scholar 

  57. 57.

    C. Rodríguez, E. Cárdenas, F.J. Belzunce, and C. Betegón, Fracture Characterization of Steels by Means of the Small Punch Test, Exp. Mech., 2013, 53(3), p 385-392

    Article  Google Scholar 

  58. 58.

    S. Haroush, E. Priel, D. Moreno, A. Busiba, I. Silverman, A. Turgeman, R. Shneck, and Y. Gelbstein, Evaluation of the Mechanical Properties of SS-316L Thin Foils by Small Punch Testing and Finite Element Analysis, Mater. Des., 2015, 83, p 75-84

    Article  Google Scholar 

  59. 59.

    K. Matocha, Small-Punch Testing for Tensile and Fracture Behavior: Experiences and Way Forward, ASTM Special Tech. Publ. STP, 2015, 1576, p 145-159

    Google Scholar 

  60. 60.

    J.S. Cheon and I.S. Kim, Initial Deformation During Small Punch Testing, J. Test. Eval., 1996, 24(4), p 255-262

    Article  Google Scholar 

  61. 61.

    F.M. Huang and M.L. Hamilton, Bend Testing for Miniature Disks, Nucl. Technol., 1982, 57(2), p 234-242

    Google Scholar 

  62. 62.

    E. Fleury and J.S. Ha, Small Punch Tests to Estimate the Mechanical Properties of Steels for Steam Power Plant: I, Mechanical Strength, Int. J. Pressure Vessels Piping, 1998, 75(9), p 699-706

    Article  Google Scholar 

  63. 63.

    Y. Ruan, P. Spätig, and M. Victoria, Assessment of Mechanical Properties of the Martensitic Steel EUROFER97 by Means of Punch Tests, J. Nucl. Mater., 2002, 307(1), p 236-239

    Article  Google Scholar 

  64. 64.

    E. Altstadt, H.E. Ge, V. Kuksenko, M. Serrano, M. Houska, M. Lasan, M. Bruchhausen, J.M. Lapetite, and Y. Dai, Critical Evaluation of the Small Punch Test as a Screening Procedure for Mechanical Properties, J. Nucl. Mater., 2016, 472, p 186-195

    Article  Google Scholar 

  65. 65.

    M.-C. Kim, Y.J. Oh, and B.S. Lee, Evaluation of Ductile-Brittle Transition Temperature Before and After Neutron Irradiation for RPV Steels Using Small Punch Tests, Nucl. Eng. Des., 2005, 235(17-19), p 1799-1805

    Article  Google Scholar 

  66. 66.

    B.J. Kim, Y.B. Sim, J.H. Lee, M.K. Kim, and B.S. Lim, Application of Small Punch Creep Test for Inconel 617 Alloy Weldment, Proc. Eng., 2011, 10, p 2579-2584

    Article  Google Scholar 

  67. 67.

    S. Komazaki, T. Kato, Y. Kohno, and H. Tanigawa, Creep Property Measurements of Welded Joint of Reduced-Activation Ferritic Steel by the Small-Punch Creep Test, Mater. Sci. Eng. A, 2009, 510-511, p 229-233

    Article  Google Scholar 

  68. 68.

    D.T. Blagoeva and R.C. Hurst, Application of the CEN (European Committee for Standardization) Small Punch Creep Testing Code of Practice to a Representative Repair Welded P91 Pipe, Mater. Sci. Eng. A, 2009, 510-511, p 219-223

    Article  Google Scholar 

  69. 69.

    T.H. Hyde, M. Stoyanov, W. Sun, and C.J. Hyde, On the Interpretation of Results from Small Punch Creep Tests, J. Strain Anal. Eng. Des., 2010, 45(3), p 141-164

    Article  Google Scholar 

  70. 70.

    H. Chen, T.H. Hyde, K.T. Voisey, and D.G. McCartney, Application of Small Punch Creep Testing to a Thermally Sprayed CoNiCrAlY Bond Coat, Mater. Sci. Eng. A, 2013, 585, p 205-213

    Article  Google Scholar 

  71. 71.

    Z. Yang and Z. Wang, Relationship Between Strain and Central Deflection in Small Punch Creep Specimens, Int. J. Pressure Vessels Piping, 2003, 80(6), p 397-404

    Article  Google Scholar 

  72. 72.

    T.H. Hyde and W. Sun, Some Considerations on Specimen Types for Small Sample Creep Tests, Mater. High Temp., 2010, 27(3), p 157-165

    Article  Google Scholar 

  73. 73.

    R. Sturm and Y. Li, Small-Punch Testing of a Weld’s Heat-Affected Zones, Materiali in Technologije, 2006, 40(2), p 49-54

    Google Scholar 

  74. 74.

    Y. Li and R. Sturm, Determination of Creep Properties From Small Punch Test, In Proc. ASME Pressure Vessels & Piping Division Conference, 2008, p. 739-750

  75. 75.

    J. Chakrabarty, A theory of Stretch Forming Over Hemispherical Punch Heads, Int. J. Mech. Sci., 1970, 12(4), p 315-325

    Article  Google Scholar 

  76. 76.

    X. Mao, M. Saito, and H. Takahashi, Small Punch Test to Predict Ductile Fracture Toughness JIC and Brittle Fracture Toughness KIC, Scr. Metall. Mater., 1991, 25(11), p 2481-2485

    Article  Google Scholar 

  77. 77.

    M. Evans and D. Wang, The Small Punch Creep Test: Some Results from a Numerical Model, J. Mater. Sci., 2008, 43(6), p 1825-1835

    Article  Google Scholar 

  78. 78.

    Y. Tamarin, Protective Coatings for Turbine Blades, Asm Intl, Russell, 2002

    Google Scholar 

  79. 79.

    R.R. Bowman, R.D. Noebe, S.V. Raj, and I.E. Locci, Correlation of Deformation Mechanisms with the Tensile and Compressive Behavior of NiAl and NiAl(Zr) Intermetallic Alloys, MTA, 1992, 23(5), p 1493-1508

    Article  Google Scholar 

  80. 80.

    M. Arana Antelo, P.K. Johnson, K.M. Ostolaza, and J. Bressers, Analysis of the Fracture Behaviour of an Aluminide Coating on a Single-Crystal Superalloy Under Tensile Conditions, Mater. Sci. Eng. A, 1998, 247(1-2), p 40-50

    Article  Google Scholar 

  81. 81.

    P. Hancock, H.H. Chien, J.R. Nicholls, and D.J. Stephenson, In situ Measurements of the Mechanical Properties of Aluminide Coatings, Surf. Coat. Technol., 1990, 43, p 359-370

    Article  Google Scholar 

  82. 82.

    T.C. Totemeier, W.F. Gale, and J.E. King, Fracture Behaviour of an Aluminide Coating on a Single Crystal Nickel Base Superalloy, Mater. Sci. Eng. A, 1993, 169(1), p 19-26

    Article  Google Scholar 

  83. 83.

    G.W. Meetham, Use of Protective Coatings in Aero Gas Turbine Engines, Mater. Sci. Technol., 1986, 2(3), p 290-294

    Article  Google Scholar 

  84. 84.

    R.W. Smith, Mechanical Properties of a Low-Pressure-Plasma-Applied Co-Cr-Al-Y Coating, Thin Solid Films, 1981, 84(1), p 59-72

    Article  Google Scholar 

  85. 85.

    M. Eskner and R. Sandström, Measurement of the Ductile-to-Brittle Transition Temperature in a Nickel Aluminide Coating by a Miniaturised Disc Bending Test Technique, Surf. Coat. Technol., 2003, 165(1), p 71-80

    Article  Google Scholar 

  86. 86.

    G.A. Jackson, W. Sun, and D.G. Mccartney, The Application of the Small Punch Tensile Test to Evaluate the Ductile to Brittle Transition of a Thermally Sprayed CoNiCrAlY Coating, Key Eng. Mater., 2017, 734, p 144-155

    Article  Google Scholar 

  87. 87.

    B. Ule, R. Sturm, and V. Leskovsek, Effects of Test Specimen Geometry in Creep Behaviour of 12Cr Steel in Miniaturised Disc Bend Tests, Mater. Sci. Technol., 2003, 19(12), p 1771-1776

    Article  Google Scholar 

  88. 88.

    F. Dobeš and K. Milička, Estimation of Ductility of Fe-Al Alloys by Means of Small Punch Test, Intermetallics, 2010, 18(7), p 1357-1359

    Article  Google Scholar 

  89. 89.

    J.H. Bulloch, A Review of the ESB Small Punch Test Data on Various Plant Components with Special Emphasis on Fractographic Details, Eng. Failure Anal., 2002, 9(5), p 511-534

    Article  Google Scholar 

  90. 90.

    M.C. Kim, Y.J. Oh, and B.S. Lee, Evaluation of Ductile-Brittle Transition Temperature Before and After Neutron Irradiation for RPV Steels Using Small Punch Tests, Nucl. Eng. Des., 2005, 235(17-19), p 1799-1805

    Article  Google Scholar 

  91. 91.

    Z.X. Wang, H.J. Shi, J. Lu, P. Shi, and X.F. Ma, Small Punch Testing for Assessing the Fracture Properties of the Reactor Vessel Steel with Different Thicknesses, Nucl. Eng. Des., 2008, 238(12), p 3186-3193

    Article  Google Scholar 

  92. 92.

    S. Soltysiak, M. Selent, S. Roth, M. Abendroth, M. Hoffmann, H. Biermann, and M. Kuna, High-Temperature Small Punch Test for Mechanical Characterization of a Nickel-Base Super Alloy, Mater. Sci. Eng. A, 2014, 613, p 259-263

    Article  Google Scholar 

  93. 93.

    M. Eskner and R. Sandström, Mechanical Properties and Temperature Dependence of an Air Plasma-Sprayed NiCoCrAlY Bondcoat, Surf. Coat. Technol., 2006, 200(8), p 2695-2703

    Article  Google Scholar 

  94. 94.

    J. Kameda, T.E. Bloomer, Y. Sugita, A. Ito, and S. Sakurai, High Temperature Environmental Attack and Mechanical Degradation of Coatings in Gas Turbine Blades, Mater. Sci. Eng. A, 1997, 229(1-2), p 42-54

    Article  Google Scholar 

  95. 95.

    J. Kameda, T.E. Bloomer, Y. Sugita, A. Ito, and S. Sakurai, Mechanical Properties of Aluminized CoCrAlY Coatings in Advanced Gas Turbine Blades, Mater. Sci. Eng. A, 1997, 234-236, p 489-492

    Article  Google Scholar 

  96. 96.

    J. Kameda, T. Bloomer, and S. Sakurai, Oxidation/Carbonization/Nitridation and in-Service Mechanical Property Degradation of CoCrAlY Coatings in Land-Based Gas Turbine Blades, J. Therm. Spray Technol., 1999, 8(3), p 440-446

    Article  Google Scholar 

  97. 97.

    H. Chen and T.H. Hyde, Use of Multi-step Loading Small Punch Test to Investigate the Ductile-to-Brittle Transition Behaviour of a Thermally Sprayed CoNiCrAlY Coating, Mater. Sci. Eng. A, 2017, 680, p 203-209

    Article  Google Scholar 

  98. 98.

    M.H. Enayati, F. Karimzadeh, M. Tavoosi, B. Movahedi, and A. Tahvilian, Nanocrystalline NiAl Coating Prepared by HVOF Thermal Spraying, J. Therm. Spray Technol., 2011, 20(3), p 440-446

    Article  Google Scholar 

  99. 99.

    J.Z. Chen, H. Herman, and S. Safai, Evaluation of NiAl and NiAl-B Deposited by Vacuum Plasma Spray, J. Therm. Spray Technol., 1993, 2(4), p 357-361

    Article  Google Scholar 

  100. 100.

    M. Ahrens, R. Vaßen, D. Stöver, and S. Lampenscherf, Sintering and Creep Processes in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 432-442

    Article  Google Scholar 

  101. 101.

    R. Soltani, T.W. Coyle, and J. Mostaghimi, Microstructure and Creep Behavior of Plasma-Sprayed Yttria Stabilized Zirconia Thermal Barrier Coatings, J. Therm. Spray Technol., 2008, 17(2), p 244-253

    Article  Google Scholar 

  102. 102.

    R. Soltani, E. Garcia, T.W. Coyle, J. Mostaghimi, R.S. Lima, B.R. Marple, and C. Moreau, Thermomechanical Behavior of Nanostructured Plasma Sprayed Zirconia Coatings, J. Therm. Spray Technol., 2006, 15(4), p 657-662

    Article  Google Scholar 

  103. 103.

    Y. Liu, C. Persson, and J. Wigren, Experimental and Numerical Life Prediction of Thermally Cycled Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 415-424

    Article  Google Scholar 

  104. 104.

    M.G. Hebsur and R.V. Miner, High Temperature Tensile and Creep Behaviour of Low Pressure Plasma-Sprayed Ni-Co-Cr-Al-Y Coating Alloy, Mat. Sci. Eng., 1986, 83(2), p 239-245

    Article  Google Scholar 

  105. 105.

    M.G. Hebsur and R.V. Miner, Stress Rupture And Creep Behavior of a Low Pressure Plasma-Sprayed NiCoCrAlY Coating Alloy in air and Vacuum, Thin Solid Films, 1987, 147(2), p 143-152

    Article  Google Scholar 

  106. 106.

    A.A. Wereszczak, J.G. Hemrick, T.P. Kirkland, J.A. Haynes, T.J. Fitzgerald, and J.E. Junkin, Stress Relaxation of MCrAlY Bond Coat Alloys as a Function of Temperature and Strain. In Proceedings of the International Gas Turbine and Aeroengine Congress and Exhibition, ASME, June, 1998, p. 98-GT-403

  107. 107.

    W. Brindley and J. Whittenberger, Stress Relaxation of Low Pressure Plasma-Sprayed NiCrAlY Alloys, Mater. Sci. Eng. A, 1993, 163(1), p 33-41

    Article  Google Scholar 

  108. 108.

    J.A. Thompson, Y.C. Tsui, R.C. Reed, D.S. Rickerby, and T.W. Clyne, Creep of Plasma Sprayed CoNiCrAlY and NiCrAlY Bond Coats and Its Effects on Residual Stresses During Thermal Cycling of Thermal Barrier Coating Systems, High Temperature Surface Engineering, J.R. Nicholls and D.S. Rickerby Eds., IOM, 2000, p. 199-212

  109. 109.

    L. Ajdelsztajn, D. Hulbert, A. Mukherjee, and J.M. Schoenung, Creep Deformation Mechanism of Cryomilled NiCrAlY Bond Coat Material, Surf. Coat. Technol., 2007, 201(24), p 9462-9467

    Article  Google Scholar 

  110. 110.

    M.P. Taylor, H.E. Evans, C.B. Ponton, and J.R. Nicholls, A Method for Evaluating the Creep Properties of Overlay Coatings, Surf. Coat. Technol., 2000, 124(1), p 13-18

    Article  Google Scholar 

  111. 111.

    H. Chen, T.H. Hyde, K.T. Voisey, and D.G. McCartney, Effects of Pre-cracking on Small Punch Creep Testing of a Vacuum Plasma-Sprayed CoNiCrAlY Coating, Proc IMechE Part L: J Materials: Design and Application, 2016, doi:10.1177/1464420715622495

    Google Scholar 

  112. 112.

    G.A. Jackson, H. Chen, W. Sun, and D.G. Mccartney, The High Temperature Creep Properties of a Thermally Sprayed CoNiCrAlY Coating via Small Punch Creep Testing, Key Eng. Mater., 2017, 734, p 37-48

    Article  Google Scholar 

  113. 113.

    R. Musalek, O. Kovarik, L. Tomek, J. Medricky, Z. Pala, P. Hausild, J. Capek, K. Kolarik, N. Curry, and S. Bjorklund, Fatigue Performance of TBCs on Hastelloy X Substrate During Cyclic Bending, J. Therm. Spray Technol., 2016, 25(1), p 231-243

    Article  Google Scholar 

  114. 114.

    O. Kovářík, P. Haušild, J. Medřický, L. Tomek, J. Siegl, R. Mušálek, N. Curry, and S. Björklund, Fatigue Crack Growth in Bodies with Thermally Sprayed Coating, J. Therm. Spray Technol., 2016, 25(1), p 311-320

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Shane Maskill for his skilled assistance in carrying out the small punch testing experiments at the University of Nottingham. The authors also thank Prof. Graham McCartney, Prof. Thomas Hyde and Prof. John Nicholls for helpful discussions. We would also like to thank Loughborough University and Dr. G. West for assistance with the EBSD study. The financial support from Zhejiang Natural Science Foundation Programme (No. LQ16E060001), Zhejiang Commonweal Technology Project (No. 2016C31023), Ningbo Enrich People Project (2016C10035) and Ningbo Natural Science Foundation Programme (No. 2016A610114) is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Jackson, G.A. & Sun, W. An Overview of Using Small Punch Testing for Mechanical Characterization of MCrAlY Bond Coats. J Therm Spray Tech 26, 1222–1238 (2017). https://doi.org/10.1007/s11666-017-0593-y

Download citation

Keywords

  • creep
  • ductile-to-brittle transition
  • mechanical testing
  • MCrAlY bond coat
  • small punch