N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284
Article
Google Scholar
H. Evans, Oxidation Failure of TBC Systems: An Assessment of Mechanisms, Surf. Coat. Technol., 2011, 206(7), p 1512-1521
Article
Google Scholar
M. Białas, Finite Element Analysis of Stress Distribution in Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202(24), p 6002-6010. doi:10.1016/j.surfcoat.2008.06.178.
Article
Google Scholar
E.P. Busso, Z.Q. Qian, M.P. Taylor, and H.E. Evans, The Influence of Bondcoat and Topcoat Mechanical Properties on Stress Development in Thermal Barrier Coating Systems, Acta Mater., 2009, 57(8), p 2349-2361. doi:10.1016/j.actamat.2009.01.017.
Article
Google Scholar
G.C. Chang, W. Phucharoen, and R.A. Miller, Finite Element Thermal Stress Solutions for Thermal Barrier Coatings, Surf. Coat. Technol.,1987, 32(1-4), p 307-325. doi:10.1016/0257-8972(87)90116-2.
Article
Google Scholar
A.M. Freborg, B.L. Ferguson, G.J. Petrus, and W.J. Brindley, Modeling Oxidation Induced Stresses in Thermal Barrier Coatings, Mater. Sci. Eng., 1998 A245, p 182-190
Article
Google Scholar
A.M. Karlsson and A. Evans, A Numerical Model for the Cyclic Instability of Thermally Grown Oxides in Thermal Barrier Systems, Acta Mater., 2001, 49(10), p 1793-1804
Article
Google Scholar
L. Wang, Y. Wang, X. Sun, J. He, Z. Pan, and C. Wang, Finite Element Simulation of Residual Stress of Double-Ceramic-Layer La 2 Zr 2 o 7/8YSZ Thermal Barrier Coatings Using Birth and Death Element Technique, Comput. Mater. Sci., 2012, 53(1), p 117-127
Article
Google Scholar
K. Khor and Y. Gu, Effects of Residual Stress on the Performance of Plasma Sprayed Functionally Graded zro2/Nicocraly Coatings, Mater. Sci. Eng. A, 2000, 277(1), p 64-76
Article
Google Scholar
R. Bürgel, H.J. Maier, and T. Niendorf, Handbuch Hochtemperatur-Werkstofftechnik, 4th edn. (Vieweg+Teubner, Braunschweig/ Wiesbaden, 2011).
Book
Google Scholar
M. Bäker and J. Rösler, Simulation of Crack Propagation in Thermal Barrier Coatings with Friction, Comput. Mater. Sci., 2012, 52(1), p 236-239.
Article
Google Scholar
M. Bäker, Influence of Material Models on the Stress State in Thermal Barrier Coating Simulations, Surf. Coat. Technol., 2014, 240, p 301-310
Article
Google Scholar
H. Guo, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density, Surf. Coat. Technol., 186(3), p 353-363
Article
Google Scholar
M. Bartsch, B. Baufeld, S. Dalkiliç, L. Chernova, and M. Heinzelmann, Fatigue Cracks in a Thermal Barrier Coating System on a Superalloy in Multiaxial Thermomechanical Testing, Int. J. Fatigue, 2008, 30(2), p 211-218
Article
Google Scholar
P. Seiler, M. Bäker, and J. Rösler, Multi-scale Failure Mechanisms of Thermal Barrier Coating Systems, Comput. Mater. Sci., 2013, 80, p 27-34
Article
Google Scholar
M. Bäker, J. Rösler, and E. Affeldt, The Influence of Axial Loading on the Interface Stresses of Thermal Barrier Coatings, Comput. Mater. Sci. , 2009, 47(2), p 466-470. doi:10.1016/j.commatsci.2009.09.012.
Article
Google Scholar
P. Seiler, M. Bäker, and J. Rösler, Influence of Creep and Cyclic Oxidation in Thermal Barrier Coatings, Int. J. Mater. Res., 2012, 103(1), p 50-56
Article
Google Scholar
D. Clarke, R. Christensen, and V. Tolpygo, The Evolution of Oxidation Stresses in Zirconia Thermal Barrier Coated Superalloy Leading to Spalling Failure, Surf. Coat. Technol., 1997, 94, p 89-93
Article
Google Scholar
M. Gupta, K. Skogsberg, P. Nyle, S. Korea, M. Gupta, K. Skogsberg, and P. Nyle, Influence of Topcoat-Bondcoat Interface Roughness on Stresses and Lifetime in Thermal Barrier Coatings, J. Therm. Spray Technol., 2014, 23, p 170-181. doi:10.1007/s11666-013-0022-9.
Article
Google Scholar
M. Jinnestrand and H. Brodin, Crack Initiation and Propagation in Air Plasma Sprayed Thermal Barrier Coatings, Testing and Mathematical Modelling of Low Cycle Fatigue Behaviour, Mater. Sci. Eng. A, 2004, 379(1-2), p 45-57. doi:10.1016/j.msea.2003.12.063.
Article
Google Scholar
M. Jinnestrand and S. Sjöström, Investigation by 3D FE Simulations of Delamination Crack Initiation in TBC Caused by Alumina Growth. Surf. Coat. Technol., 2001, 135(2-3), p 188-195. doi:10.1016/S0257-8972(00)01084-7.
Article
Google Scholar
M. Schweda, T. Beck, and L. Singheiser, Influence of Bondcoat Creep and Roughness on Damage and Lifetime of ZrO2 TBCs for Gas Turbines Under Thermocyclic Loads, J. Phys. Conf. Ser., 2010, 240(1), p 012077
Article
Google Scholar
S. Asghari and M. Salimi, Finite Element Simulation of Thermal Barrier Coating Performance Under Thermal Cycling, Surf. Coat. Technol., 2010, 205(7), p 2042-2050. doi:10.1016/j.surfcoat.2010.08.099.
Article
Google Scholar
P. Bednarz, Finite Element Simulation Stress Evolution in Thermal Barrier Coating Systems, Ph.D. thesis, Forschungszentrum Jülich (2007)
C.H. Hsueh, J.A. Haynes, M.J. Lance, P.F. Becher, M.K. Ferber, E.R. Fuller, S.A. Langer, W.C. Carter, and W.R. Cannon, Effects of Interface Roughness on Residual Stresses in Thermal Barrier Coatings, J. Am. Ceram. Soc., 1999, 82, p 1073-1075
Article
Google Scholar
A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, and P. Miranzo, Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54, p 3343-3349. doi:10.1016/j.actamat.2006.03.024.
Article
Google Scholar
P. Michlik and C. Berndt, Image-Based Extended Finite Element Modeling of Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 201(6), p 2369-2380. doi:10.1016/j.surfcoat.2006.04.003.
Article
Google Scholar
N. Nayebpashaee, S. Seyedein, M. Aboutalebi, H. Sarpoolaky, and S. Hadavi, Finite Element Simulation of Residual Stress and Failure Mechanism in Plasma Sprayed Thermal Barrier Coatings Using Actual Microstructure as the Representative Volume, Surf. Coat. Technol., 2016, 291, p 103-114
Article
Google Scholar
J. Rosler, H. Harders, and M. Baker, Mechanical Behaviour of Engineering Materials (Springer, New York 2007)
Google Scholar
R. Ghafouri-Azar, J. Mostaghimi, and S. Chandra, Modeling Development of Residual Stresses in Thermal Spray Coatings. Comput. Mater. Sci., 2006, 35(1), p 13-26. doi:10.1016/j.commatsci.2005.02.007.
Article
Google Scholar
J. Rösler, M. Bäker, and K. Aufzug, A Parametric Study of the Stress State of Thermal Barrier Coatings. Part I: Creep Relaxation, Acta Mater., 2004, 52(16), p 4809-4817. doi:10.1016/j.actamat.2004.06.046.
Google Scholar
O. Trunova, P. Bednarza, R. Herzog, T. Beck, and L. Singheiser, Microstructural and Acoustic Damage Analysis and Finite Element Stress Simulation of Air Plasma-Sprayed Thermal Barrier Coatings Under Thermal Cycling, Int. J. Mater. Res. (formerly Zeitschrift für Metallkunde), 2008, 99(10), p 1129-1135. doi:10.3139/146.101741.
Article
Google Scholar
M. Bäker, S. Reese, and V. Silberschmidt, Simulation of Crack Propagation Under Mixed-Mode Loading, in Handbook of Mechanics of Materials, ed. C. Hsueh, S. Schmauder, C. Chen, K. Chawla, N. Chawla, W. Chen, and K.Y. (Springer, Germany, In press)
I.L. Lim, I.W. Johnston, and S.K. Choi, Comparison Between Various Displacement-Based Stress Intensity Factor Computation Techniques, Int. J. Fract., 1992, 58(3), p 193-210. doi:10.1007/BF00015615.
Article
Google Scholar
M. Duflot, A Study of the Representation of Cracks with Level Sets. Int. J. Numer. Meth. Eng., 2007, 70(11), p 1261-1302. doi:10.1002/nme.1915.
Article
Google Scholar
S. Kyaw, I. Jones, and T. Hyde, Simulation of Failure of Air Plasma Sprayed Thermal Barrier Coating Due to Interfacial and Bulk Cracks Using Surface-Based Cohesive Interaction and Extended Finite Element Method, J. Strain Anal. Eng. Des., 2016, 51(2), p 132-143
Article
Google Scholar
F. Guo, L. Guo, K. Huang, X. Bai, S. Zhong, and H. Yu, An Interaction Energy Integral Method for t-Stress Evaluation in Nonhomogeneous Materials Under Thermal Loading, Mech. Mater., 2015, 83, p 30-39
Article
Google Scholar
K. Al-Athel, K. Loeffel, H. Liu, and L. Anand, Modeling Decohesion of a Top-Coat from a Thermally-Growing Oxide in a Thermal Barrier Coating, Surf. Coat. Technol., 2013, 222, p 68-78. doi:10.1016/j.surfcoat.2013.02.005.
Article
Google Scholar
P. Bouchard, F. Bay, and Y. Chastel, Numerical Modelling of Crack Propagation: Automatic Remeshing and Comparison of Different Criteria, Comput. Methods Appl. Mech. Eng., 2003, 192(35-36), p 3887-3908. doi:10.1016/S0045-7825(03)00391-8.
Article
Google Scholar
W. Zhang, X. Fan, and T. Wang, The Surface Cracking Behavior in Air Plasma Sprayed Thermal Barrier Coating System Incorporating Interface Roughness Effect, Appl. Surf. Sci., 258(2), p 811-817
Article
Google Scholar
T. Wakui, J. Malzbender, and R. Steinbrech, Strain Dependent Stiffness of Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2006, 200(16), p 4995-5002
Article
Google Scholar
R. Vaßen, S. Giesen, and D. Stöver, Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results, J. Therm. Spray Technol., 2009, 18(5-6), p 835-845
Article
Google Scholar
J. Rösler, M. Bäker, and M. Volgmann, Stress State and Failure Mechanisms of Thermal Barrier Coatings: Role of Creep in Thermally Grown Oxide, Acta Mater., 2001, 49(18), p 3659-3670
Article
Google Scholar
M. Bäker, T. Fiedler, and J. Rösler, Stress Evolution in Thermal Barrier Coatings for Rocket Engine Applications, Mech. Adv. Mater. Modern Process., 2015, 1(1), p 1-10
Article
Google Scholar
M. Bäker, J. Rösler, and G. Heinze, A Parametric Study of the Stress State of Thermal Barrier Coatings Part II: Cooling Stresses, Acta Mater., 2005, 53(2), p 469-476. doi:10.1016/j.actamat.2004.10.004.
Article
Google Scholar
M. Fassin, S. Wulfinghoff, and S. Reese, Modelling Thermal Barrier Coatings and Their Influence on the Lifetime of Rocket Engine Nozzle Structures, In: VII European Congress on Computational Methods in Applied Sciences and Engineering. ECCOMAS, 2016
E. Busso, J. Lin, S. Sakurai, and M. Nakayama, A mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System. Part I: Model Formulation, Acta Mater., 2001, 49(9), p 1515-1528
Article
Google Scholar
X. Huang, J. Wang, K. Song, F. Zhang, T. Yi, and J. Ding, A Comparative Study for Modeling Displacement Instabilities Due to TGO Formation in TBCs of High-Temperature Components in Nuclear Power Plant, Sci. Tech. Nucl. Install., 2016. doi:10.1155/2016/2857065
M. Bäker, Finite Element Simulation of Interface Cracks in Thermal Barrier Coatings. Comput. Mater. Sci, 2012, 64, p 79-83 (2012). doi:10.1016/j.commatsci.2012.02.044. Proceedings of the 21st International Workshop on Computational Mechanics of Materials (IWCMM 21)
Article
Google Scholar
M. Karadge, X. Zhao, M. Preuss, and P. Xiao, Microtexture of the Thermally Grown Alumina in Commercial Thermal Barrier Coatings, Scr. Mater., 2006, 54(4), p 639-644
Article
Google Scholar
J. Cho, C. Wang, H. Chan, J. Rickman, and M. Harmer, Role of Segregating Dopants on the Improved Creep Resistance of Aluminium Oxide. Acta materialia 47(15), 4197-4207 (1999).
Article
Google Scholar
M. Schütze, Protective Oxide Scales and Their Breakdown (Wiley, Chichester 1997).
Google Scholar
G.W. Dransmann, R.W. Steinbrech, A. Pajares, F. Guiberteau, A. Dominguez-Rodriguez, and A.H. Heuer, Indentation Studies on Y2O3“ = Stabilized ZrO2: II, Toughness Determination from Stable Growth of Indentation” = Induced Cracks, J. Am. Ceram. Soc., 1994, 77(5), p 1194-1201. doi:10.1111/j.1151-2916.1994.tb05392.x
Article
Google Scholar
Y. Yamazaki, A. Schmidt, and A. Scholz, The Determination of the Delamination Resistance In Thermal Barrier Coating System by Four-Point Bending Tests, Surf. Coat. Technol., 2006, 201(3), p 744-754
Article
Google Scholar
W. Zhu, L. Yang, J. Guo, Y. Zhou, and C. Lu, Determination of Interfacial Adhesion Energies of Thermal Barrier Coatings by Compression Test Combined with a Cohesive Zone Finite Element Model, Int. J. Plast., 2015, 64, p 76-87. doi:10.1016/j.ijplas.2014.08.003. http://www.sciencedirect.com/science/article/pii/S074964191400151X.
M.S. Kaliszewski, G. Behrens, A.H. Heuer, M.C. Shaw, D.B. Marshall, G.W. Dransmanri, R.W. Steinbrech, A. Pajares, F. Guiberteau, F.L. Cumbrera et al., Indentation Studies on y2o2-Stabilized zro2: I, Development of Indentation-Induced Cracks, J. Am. Ceram. Soc., 1994, 77(5), p 1185-1193
Article
Google Scholar
M. Rudolphi, D. Renusch, H.E. Zschau, and M. Schütze, The Effect of Moisture on the Delayed Spallation of Thermal Barrier Coatings: Vps Nicocraly Bond Coat+ APS YSZ Top Coat, Mater. High Temp., 2009, 26(3), p 325-329
E. Shillington and D. Clarke, Spalling Failure of a Thermal Barrier Coating Associated with Aluminum Depletion in the Bond-Coat, Acta Mater., 1999, 47(4), p 1297-1305
Article
Google Scholar
M. Ahrens, R. Vaßen, and D. Stöver, Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings as a Function of Interface Roughness and Oxide Scale Thickness, Surf. Coat. Technol., 2002, 161(1), p 26-35. doi:10.1016/S0257-8972(02)00359-6
Article
Google Scholar
O. Trunova, T. Beck, R. Herzog, R. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines Part I: Experiments, Surf. Coat. Technol., 2008, 202(20), p 5027-5032
Article
Google Scholar
H. Aleksanoglu, A. Scholz, M. Oechsner, C. Berger, M. Rudolphi, M. Schütze, and W. Stamm, Determining a Critical Strain for APS Thermal Barrier Coatings Under Service Relevant Loading Conditions, Int. J. Fatigue, 2013, 53, p 40-48.
Article
Google Scholar
R. Vaßen, F. Cernuschi, G. Rizzi, A. Scrivani, N. Markocsan, L. Östergren, A. Kloosterman, R. Mevrel, J. Feist, and J. Nicholls, Recent Activities in the Field of Thermal Barrier Coatings Including Burner Rig Testing in the European Union, Adv. Eng. Mater., 2008, 10(10), p 907-921
Article
Google Scholar
J. Schloesser, M. Bäker, and J. Rösler, Laser Cycling and Thermal Cycling Exposure of Thermal Barrier Coatings on Copper Substrates, Surf. Coat. Technol., 2011, 206(7), p 1605-1608
Article
Google Scholar
T. Beck, M. Schweda, and L. Singheiser, Influence of Interface Roughness, Substrate and Oxide-Creep on Damage Evolution and Lifetime of Plasma Sprayed Zirconia-Based Thermal Barrier Coatings, Proc. Eng., 2013, 55, p 191-198
Article
Google Scholar
T. Beck, R. Herzog, O. Trunova, M. Offermann, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma-Sprayed Thermal Barrier Coating Systems for Gas Turbines Part II: Modeling, Surf. Coat. Technol., 2008, 202(24), p 5901-5908
Article
Google Scholar