Advertisement

Journal of Thermal Spray Technology

, Volume 26, Issue 6, pp 1025–1037 | Cite as

Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

  • Benjamin Bernard
  • Aurélie Quet
  • Luc BianchiEmail author
  • Vincent Schick
  • Aurélien Joulia
  • André Malié
  • Benjamin Rémy
Peer Reviewed

Abstract

Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m−1 K−1 for EB-PVD YSZ coatings to about 0.7 W m−1 K−1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ′-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

Keywords

columnar structure lifetime suspension plasma spraying thermal barrier coating thermal conductivity YSZ 

References

  1. 1.
    U. Schultz, B. Saruhan, K. Fritscher, and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 302-315CrossRefGoogle Scholar
  2. 2.
    U. Schultz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J.-M. Dorvaux, M. Poulain, R. Mévrel, and M. Caliez, Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7(1), p 73-80CrossRefGoogle Scholar
  3. 3.
    U. Schultz, M. Menzebach, C. Leyens, and Y.Q. Yang, Influence of Substrate Material on Oxidation Behavior and Cyclic Lifetime of EB-PVD TBC Systems, Surf. Coat. Technol., 2001, 146-147, p 117-123CrossRefGoogle Scholar
  4. 4.
    P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44-66CrossRefGoogle Scholar
  5. 5.
    Y. Tan, V. Srinivasan, T. Nakamura, S. Sampath, P. Bertrand, and G. Bertrand, Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies, J. Therm. Spray Technol., 2012, 21(5), p 950-962CrossRefGoogle Scholar
  6. 6.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coating for Gas-Turbine Engine Applications, Sci. Compass, 2002, 296, p 280-284Google Scholar
  7. 7.
    R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 2004, 6(1), p 35-42CrossRefGoogle Scholar
  8. 8.
    X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10CrossRefGoogle Scholar
  9. 9.
    R. Vassen, A. Stuke, and D. Stöver, Recent Development in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186CrossRefGoogle Scholar
  10. 10.
    R. Vassen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942CrossRefGoogle Scholar
  11. 11.
    G. Suresh, G. Seenivasan, M.V. Krishnaiah, and P.S. Murti, Investigation of the Thermal Conductivity of Selected Compounds of Lanthanum, Samarium and Europium, J. Alloys Compd., 1998, 269(1-2), p L9-L12CrossRefGoogle Scholar
  12. 12.
    J. Wu, X. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. Garcia, P. Miranzo, and M.I. Osendi, Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, J. Am. Ceram. Soc., 2002, 85(12), p 3031-3035CrossRefGoogle Scholar
  13. 13.
    X.Q. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating, J. Am. Ceram. Soc., 2001, 84(9), p 2086-2090CrossRefGoogle Scholar
  14. 14.
    R.S. Lima, A. Kucuk, and C.C. Berndt, Bimodal Distribution of Mechanical Properties on Plasma Sprayed Nanostructured Partially Stabilized Zirconia, Mater. Sci. Eng. A, 2002, 327(2), p 224-232CrossRefGoogle Scholar
  15. 15.
    R.S. Lima and B.R. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effect, Mater. Sci. Eng. A, 2008, 485(1-2), p 182-193CrossRefGoogle Scholar
  16. 16.
    J. Wu, H.B. Guo, L. Zhou, L. Wang, and S.K. Gong, Microstructure and Thermal Properties of Plasma Sprayed Thermal Barrier Coatings from Nanostructured YSZ, J. Therm. Spray Technol., 2010, 19(6), p 1186-1194CrossRefGoogle Scholar
  17. 17.
    C. Viazzi. Elaboration par le procédé sol–gel de revêtements de zircone yttriée sur substrats métalliques pour l’application barrière thermique (Elaboration by Sol–Gel Process of Yttria Stabilized Zirconia Coatings on Metallic Substrates for Thermal Barrier Coating Application). Ph.D. thesis, University of Toulouse, France, 2007, in FrenchGoogle Scholar
  18. 18.
    L. Pin, F. Ansart, J.P. Bonino, Y. Le Maoult, V. Vidal, and P. Lours, Reinforced Sol–Gel Thermal Barrier Coatings and Their Cyclic Oxidation Life, J. Eur. Ceram. Soc., 2013, 33(2), p 269-276CrossRefGoogle Scholar
  19. 19.
    S. Rezanka, G. Mauer, and R. Vassen, Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD, J. Therm. Spray Technol., 2014, 23(1), p 182-189CrossRefGoogle Scholar
  20. 20.
    K. Von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD™, J. Therm. Spray Technol., 2010, 19(1), p 502-509CrossRefGoogle Scholar
  21. 21.
    P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals from Powder to Part, Springer, New York, 2014CrossRefGoogle Scholar
  22. 22.
    P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59CrossRefGoogle Scholar
  23. 23.
    A. Bacciochini, J. Ilavsky, G. Montavon, A. Denoirjean, F. Ben-ettouil, S. Valette, P. Fauchais, and K. Wittmann-Ténèze, Quantification of Void Network Architectures of Suspension Plasma-Sprayed (SPS) Yttria-Stabilized Zirconia (YSZ) Coatings Using Ultrasmall-Angle X-ray Scattering (USAXS), Mater. Sci. Eng. A, 2010, 528(1), p 91-102CrossRefGoogle Scholar
  24. 24.
    A. Ganvir, N. Curry, N. Markocsan, and S. Govindarajan, Characterization of Thermal Barrier Coatings Produced by Various Thermal Spray Techniques Using Solid Powder, Suspension, and Solution Precursor Feedstock Material, Int. J. Appl. Ceram. Technol., 2016, 13(2), p 324-332CrossRefGoogle Scholar
  25. 25.
    E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859CrossRefGoogle Scholar
  26. 26.
    E.H. Jordan, L. Xie, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, J. Roth, T.D. Xiao, and P.E.C. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65CrossRefGoogle Scholar
  27. 27.
    H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123CrossRefGoogle Scholar
  28. 28.
    D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(10), p 2132-2138CrossRefGoogle Scholar
  29. 29.
    J.O. Berghaus, S. Bouaricha, J.G. Lagroux, and C. Moreau, Injection Conditions and In-Flight Particles States in Suspension Plasma Spraying of Alumina and Zirconia Nano-Ceramics, Thermal Spray 2005: Thermal Spray Connects: Explore Its Surfacing Potential!, E. Lugscheider, Ed., DVS-German Welding Society, Basel, 2005,Google Scholar
  30. 30.
    K.J. Van Every, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828CrossRefGoogle Scholar
  31. 31.
    P. Sokolowski, S. Kozerski, L. Pawlowski, and A. Ambroziak, The Key Process Parameters Influencing Formation of Columnar Microstructure in Suspension Plasma Sprayed Zirconia Coatings, Surf. Coat. Technol., 2014, 260, p 97-106CrossRefGoogle Scholar
  32. 32.
    N. Curry, Z. Tang, N. Markocsan, and P. Nylén, Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings—Thermal and Lifetime Performance, Surf. Coat. Technol., 2015, 268, p 15-23CrossRefGoogle Scholar
  33. 33.
    B. Bernard, L. Bianchi, A. Malié, A. Joulia, and B. Rémy, Columnar Suspension Plasma Sprayed Coating Microstructural Control for Thermal Barrier Coating Application, J. Eur. Ceram. Soc., 2016, 36(4), p 1081-1089CrossRefGoogle Scholar
  34. 34.
    N. Curry, K.J. Van Every, T. Snyder, and N. Markocsan, Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings, Coatings, 2014, 4, p 630-650CrossRefGoogle Scholar
  35. 35.
    N. Curry, K. Van Every, T. Snyder, J. Susnjar, and S. Bjorklund, Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters, Coatings, 2015, 5, p 338-356CrossRefGoogle Scholar
  36. 36.
    R. Chidambaram and S. Sampath, Characterization of the Deposition Formation Dynamics of Suspension Plasma Spray Coatings Using in situ Coating Property Measurements, in Thermal Spray 2012: Proceedings of the International Thermal Spray Conference, Ed., May 10-12, 2016 (Springer, Shanghai, 2016)Google Scholar
  37. 37.
    A. Ganvir, N. Curry, N. Markocsan, P. Nylén, and F.-L. Toma, Comparative Study of Suspension Plasma Sprayed and Suspension High Velocity Oxy-Fuel Sprayed YSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2015, 268, p 70-76CrossRefGoogle Scholar
  38. 38.
    B. Bernard, A. Quet, L. Bianchi, A. Joulia, A. Malié, V. Schick, and B. Rémy, Thermal Insulation Properties of YSZ Coatings: Suspension Plasma Spraying (SPS) Versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2017, 318, p 122-128Google Scholar
  39. 39.
    Z. Tang, H. Kim, I. Yaroslavski, G. Masindo, Z. Celler, and D. Ellsworth, Novel thermal barrier coatings produced by axial suspension plasma spray, in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, ed. by B.R. Marple, A. Agarwal, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and A. McDonald, September 27-29, 2011 (Springer, Hamburg, 2012), p. 372Google Scholar
  40. 40.
    F.-R. De Hoog, J.-H. Knight, and A.-N. Stokes, An Improved Method for Numerical Inversion of Laplace Transforms, SIAM J. Sci. Stat. Comput., 1982, 3(3), p 357-366CrossRefGoogle Scholar
  41. 41.
    K. Levenberg, A Method for the Solution of Certain Nonlinear Problems in Least Squares, Quart. J. Appl. Math., 1944, 2(2), p 164-168CrossRefGoogle Scholar
  42. 42.
    D.W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math., 1963, 11(2), p 68-78CrossRefGoogle Scholar
  43. 43.
    B. Rémy, S. André, and D. Maillet, Non Linear Parameter Estimation Problems: Tools for Enhancing Metrological Objectives, Eurotherm Adv. Metti 5 Spring Sch., 2011, 4, p 1-71Google Scholar
  44. 44.
    J. Eldridge and C. Spuckler, Determination of Scattering and Absorption Coefficients For Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings, J. Am. Ceram. Soc., 2008, 91(5), p 1603-1611CrossRefGoogle Scholar
  45. 45.
    J. Eldridge, C. Spuckler, and R. Markham, Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures, J. Am. Ceram. Soc., 2009, 92(10), p 2276-2285CrossRefGoogle Scholar
  46. 46.
    V.K. Tolpygo and D.R. Clarke, The Effect of Oxidation Pre-treatment on the Cyclic Life of EB-PVD Thermal Barrier Coatings with Platinum–Aluminide Bond Coats, Surf. Coat. Technol., 2005, 200(5-6), p 1276-1281CrossRefGoogle Scholar
  47. 47.
    V. Deodeshmukh, N. Mu, B. Li, and B. Gleeson, Hot Corrosion and Oxidation Behavior of a Novel Pt + Hf-Modified γ′-Ni3Al + γ-Ni-Based Coating, Surf. Coat. Technol., 2006, 201(7), p 3836-3840CrossRefGoogle Scholar
  48. 48.
    T. Izumi, N. Mu, L. Zhang, and B. Gleeson, Effect of Targeted γ-Ni + γ′-Ni3Al-Based Coating Compositions on Oxidation Behavior, Surf. Coat. Technol., 2007, 202(4-7), p 628-631CrossRefGoogle Scholar
  49. 49.
    J.A. Haynes, B.A. Pint, Y. Zhang, and I.G. Wright, Comparison of the Cyclic Oxidation Behavior of β-NiAl, β-NiPtAl and γ-γ′ NiPtAl Coating on Various Superalloys, Surf. Coat. Technol., 2007, 202(4-7), p 730-734CrossRefGoogle Scholar
  50. 50.
    P.K. Wright and A.G. Evans, Mechanisms Governing the Performance of Thermal Barrier Coatings, Curr. Opin. Solid State Mater. Sci., 1999, 4(3), p 255-265CrossRefGoogle Scholar
  51. 51.
    A.G. Evans, D.R. Clarke, and C.G. Levi, The Influence of Oxides on the Performance of Advanced Gas Turbines, J. Eur. Ceram. Soc., 2008, 28(7), p 1405-1419CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Benjamin Bernard
    • 1
  • Aurélie Quet
    • 2
  • Luc Bianchi
    • 3
    Email author
  • Vincent Schick
    • 4
  • Aurélien Joulia
    • 3
  • André Malié
    • 5
  • Benjamin Rémy
    • 4
  1. 1.Safran Tech, Plateforme Aubes de Turbines AvancéesColombesFrance
  2. 2.CEA-DAM, Le RipaultMontsFrance
  3. 3.Safran Tech, Pôle Matériaux et ProcédésMagny-les-HameauxFrance
  4. 4.LEMTA Université de LorraineVandoeuvre-lès-NancyFrance
  5. 5.Safran Aircraft EnginesChâtelleraultFrance

Personalised recommendations