Skip to main content
Log in

Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m−1 K−1 for EB-PVD YSZ coatings to about 0.7 W m−1 K−1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ′-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. U. Schultz, B. Saruhan, K. Fritscher, and C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 302-315

    Article  Google Scholar 

  2. U. Schultz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J.-M. Dorvaux, M. Poulain, R. Mévrel, and M. Caliez, Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7(1), p 73-80

    Article  Google Scholar 

  3. U. Schultz, M. Menzebach, C. Leyens, and Y.Q. Yang, Influence of Substrate Material on Oxidation Behavior and Cyclic Lifetime of EB-PVD TBC Systems, Surf. Coat. Technol., 2001, 146-147, p 117-123

    Article  Google Scholar 

  4. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44-66

    Article  Google Scholar 

  5. Y. Tan, V. Srinivasan, T. Nakamura, S. Sampath, P. Bertrand, and G. Bertrand, Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies, J. Therm. Spray Technol., 2012, 21(5), p 950-962

    Article  Google Scholar 

  6. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coating for Gas-Turbine Engine Applications, Sci. Compass, 2002, 296, p 280-284

    Google Scholar 

  7. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 2004, 6(1), p 35-42

    Article  Google Scholar 

  8. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10

    Article  Google Scholar 

  9. R. Vassen, A. Stuke, and D. Stöver, Recent Development in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186

    Article  Google Scholar 

  10. R. Vassen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942

    Article  Google Scholar 

  11. G. Suresh, G. Seenivasan, M.V. Krishnaiah, and P.S. Murti, Investigation of the Thermal Conductivity of Selected Compounds of Lanthanum, Samarium and Europium, J. Alloys Compd., 1998, 269(1-2), p L9-L12

    Article  Google Scholar 

  12. J. Wu, X. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. Garcia, P. Miranzo, and M.I. Osendi, Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, J. Am. Ceram. Soc., 2002, 85(12), p 3031-3035

    Article  Google Scholar 

  13. X.Q. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating, J. Am. Ceram. Soc., 2001, 84(9), p 2086-2090

    Article  Google Scholar 

  14. R.S. Lima, A. Kucuk, and C.C. Berndt, Bimodal Distribution of Mechanical Properties on Plasma Sprayed Nanostructured Partially Stabilized Zirconia, Mater. Sci. Eng. A, 2002, 327(2), p 224-232

    Article  Google Scholar 

  15. R.S. Lima and B.R. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effect, Mater. Sci. Eng. A, 2008, 485(1-2), p 182-193

    Article  Google Scholar 

  16. J. Wu, H.B. Guo, L. Zhou, L. Wang, and S.K. Gong, Microstructure and Thermal Properties of Plasma Sprayed Thermal Barrier Coatings from Nanostructured YSZ, J. Therm. Spray Technol., 2010, 19(6), p 1186-1194

    Article  Google Scholar 

  17. C. Viazzi. Elaboration par le procédé sol–gel de revêtements de zircone yttriée sur substrats métalliques pour l’application barrière thermique (Elaboration by Sol–Gel Process of Yttria Stabilized Zirconia Coatings on Metallic Substrates for Thermal Barrier Coating Application). Ph.D. thesis, University of Toulouse, France, 2007, in French

  18. L. Pin, F. Ansart, J.P. Bonino, Y. Le Maoult, V. Vidal, and P. Lours, Reinforced Sol–Gel Thermal Barrier Coatings and Their Cyclic Oxidation Life, J. Eur. Ceram. Soc., 2013, 33(2), p 269-276

    Article  Google Scholar 

  19. S. Rezanka, G. Mauer, and R. Vassen, Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD, J. Therm. Spray Technol., 2014, 23(1), p 182-189

    Article  Google Scholar 

  20. K. Von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD™, J. Therm. Spray Technol., 2010, 19(1), p 502-509

    Article  Google Scholar 

  21. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals from Powder to Part, Springer, New York, 2014

    Book  Google Scholar 

  22. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59

    Article  Google Scholar 

  23. A. Bacciochini, J. Ilavsky, G. Montavon, A. Denoirjean, F. Ben-ettouil, S. Valette, P. Fauchais, and K. Wittmann-Ténèze, Quantification of Void Network Architectures of Suspension Plasma-Sprayed (SPS) Yttria-Stabilized Zirconia (YSZ) Coatings Using Ultrasmall-Angle X-ray Scattering (USAXS), Mater. Sci. Eng. A, 2010, 528(1), p 91-102

    Article  Google Scholar 

  24. A. Ganvir, N. Curry, N. Markocsan, and S. Govindarajan, Characterization of Thermal Barrier Coatings Produced by Various Thermal Spray Techniques Using Solid Powder, Suspension, and Solution Precursor Feedstock Material, Int. J. Appl. Ceram. Technol., 2016, 13(2), p 324-332

    Article  Google Scholar 

  25. E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859

    Article  Google Scholar 

  26. E.H. Jordan, L. Xie, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, J. Roth, T.D. Xiao, and P.E.C. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2004, 13(1), p 57-65

    Article  Google Scholar 

  27. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123

    Article  Google Scholar 

  28. D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(10), p 2132-2138

    Article  Google Scholar 

  29. J.O. Berghaus, S. Bouaricha, J.G. Lagroux, and C. Moreau, Injection Conditions and In-Flight Particles States in Suspension Plasma Spraying of Alumina and Zirconia Nano-Ceramics, Thermal Spray 2005: Thermal Spray Connects: Explore Its Surfacing Potential!, E. Lugscheider, Ed., DVS-German Welding Society, Basel, 2005,

    Google Scholar 

  30. K.J. Van Every, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828

    Article  Google Scholar 

  31. P. Sokolowski, S. Kozerski, L. Pawlowski, and A. Ambroziak, The Key Process Parameters Influencing Formation of Columnar Microstructure in Suspension Plasma Sprayed Zirconia Coatings, Surf. Coat. Technol., 2014, 260, p 97-106

    Article  Google Scholar 

  32. N. Curry, Z. Tang, N. Markocsan, and P. Nylén, Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings—Thermal and Lifetime Performance, Surf. Coat. Technol., 2015, 268, p 15-23

    Article  Google Scholar 

  33. B. Bernard, L. Bianchi, A. Malié, A. Joulia, and B. Rémy, Columnar Suspension Plasma Sprayed Coating Microstructural Control for Thermal Barrier Coating Application, J. Eur. Ceram. Soc., 2016, 36(4), p 1081-1089

    Article  Google Scholar 

  34. N. Curry, K.J. Van Every, T. Snyder, and N. Markocsan, Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings, Coatings, 2014, 4, p 630-650

    Article  Google Scholar 

  35. N. Curry, K. Van Every, T. Snyder, J. Susnjar, and S. Bjorklund, Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters, Coatings, 2015, 5, p 338-356

    Article  Google Scholar 

  36. R. Chidambaram and S. Sampath, Characterization of the Deposition Formation Dynamics of Suspension Plasma Spray Coatings Using in situ Coating Property Measurements, in Thermal Spray 2012: Proceedings of the International Thermal Spray Conference, Ed., May 10-12, 2016 (Springer, Shanghai, 2016)

  37. A. Ganvir, N. Curry, N. Markocsan, P. Nylén, and F.-L. Toma, Comparative Study of Suspension Plasma Sprayed and Suspension High Velocity Oxy-Fuel Sprayed YSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2015, 268, p 70-76

    Article  Google Scholar 

  38. B. Bernard, A. Quet, L. Bianchi, A. Joulia, A. Malié, V. Schick, and B. Rémy, Thermal Insulation Properties of YSZ Coatings: Suspension Plasma Spraying (SPS) Versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2017, 318, p 122-128

  39. Z. Tang, H. Kim, I. Yaroslavski, G. Masindo, Z. Celler, and D. Ellsworth, Novel thermal barrier coatings produced by axial suspension plasma spray, in Thermal Spray 2011: Proceedings of the International Thermal Spray Conference, ed. by B.R. Marple, A. Agarwal, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and A. McDonald, September 27-29, 2011 (Springer, Hamburg, 2012), p. 372

  40. F.-R. De Hoog, J.-H. Knight, and A.-N. Stokes, An Improved Method for Numerical Inversion of Laplace Transforms, SIAM J. Sci. Stat. Comput., 1982, 3(3), p 357-366

    Article  Google Scholar 

  41. K. Levenberg, A Method for the Solution of Certain Nonlinear Problems in Least Squares, Quart. J. Appl. Math., 1944, 2(2), p 164-168

    Article  Google Scholar 

  42. D.W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math., 1963, 11(2), p 68-78

    Article  Google Scholar 

  43. B. Rémy, S. André, and D. Maillet, Non Linear Parameter Estimation Problems: Tools for Enhancing Metrological Objectives, Eurotherm Adv. Metti 5 Spring Sch., 2011, 4, p 1-71

    Google Scholar 

  44. J. Eldridge and C. Spuckler, Determination of Scattering and Absorption Coefficients For Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings, J. Am. Ceram. Soc., 2008, 91(5), p 1603-1611

    Article  Google Scholar 

  45. J. Eldridge, C. Spuckler, and R. Markham, Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures, J. Am. Ceram. Soc., 2009, 92(10), p 2276-2285

    Article  Google Scholar 

  46. V.K. Tolpygo and D.R. Clarke, The Effect of Oxidation Pre-treatment on the Cyclic Life of EB-PVD Thermal Barrier Coatings with Platinum–Aluminide Bond Coats, Surf. Coat. Technol., 2005, 200(5-6), p 1276-1281

    Article  Google Scholar 

  47. V. Deodeshmukh, N. Mu, B. Li, and B. Gleeson, Hot Corrosion and Oxidation Behavior of a Novel Pt + Hf-Modified γ′-Ni3Al + γ-Ni-Based Coating, Surf. Coat. Technol., 2006, 201(7), p 3836-3840

    Article  Google Scholar 

  48. T. Izumi, N. Mu, L. Zhang, and B. Gleeson, Effect of Targeted γ-Ni + γ′-Ni3Al-Based Coating Compositions on Oxidation Behavior, Surf. Coat. Technol., 2007, 202(4-7), p 628-631

    Article  Google Scholar 

  49. J.A. Haynes, B.A. Pint, Y. Zhang, and I.G. Wright, Comparison of the Cyclic Oxidation Behavior of β-NiAl, β-NiPtAl and γ-γ′ NiPtAl Coating on Various Superalloys, Surf. Coat. Technol., 2007, 202(4-7), p 730-734

    Article  Google Scholar 

  50. P.K. Wright and A.G. Evans, Mechanisms Governing the Performance of Thermal Barrier Coatings, Curr. Opin. Solid State Mater. Sci., 1999, 4(3), p 255-265

    Article  Google Scholar 

  51. A.G. Evans, D.R. Clarke, and C.G. Levi, The Influence of Oxides on the Performance of Advanced Gas Turbines, J. Eur. Ceram. Soc., 2008, 28(7), p 1405-1419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Bianchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, B., Quet, A., Bianchi, L. et al. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties. J Therm Spray Tech 26, 1025–1037 (2017). https://doi.org/10.1007/s11666-017-0584-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0584-z

Keywords

Navigation