Skip to main content
Log in

Effect of Particle Morphology on Cold Spray Deposition of Chromium Carbide-Nickel Chromium Cermet Powders

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Nickel chromium-chromium carbide coatings provide good corrosion and wear resistance at high temperatures, making them ideal for applications where a harsh environment and high temperatures are expected. Thermal spray processes are preferred as deposition technique of cermets, but the high process temperatures can lead to decarburization and reduction of the coatings properties. Cold spray uses lower temperatures preventing decarburization. Since the metallic phase remains solid, the feedstock powder morphology becomes crucial on the deposition behavior. Six commercially available powders were studied, varying in morphology and metal/ceramic ratios. The powders were categorized into 4 groups depending on their morphology. Spherical powders lead to substrate erosion due to their limited overall ductility. Porous agglomerated and sintered powders lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome depended on the initial metal/ceramic ratio: powders with 25 wt.% NiCr led to substrate erosion while 35 wt.% NiCr powders led to dense coatings. Finally, blended ceramic-metal mixtures also lead to dense coatings. All coatings obtained had lower ceramic content than the initial feedstock powders. Interrupted spray tests, combined with FEA, helped drawing conclusions on the deposition behavior to explain the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. J.A. Picas, M. Punset, S. Menargues, E. Martín, and M.T. Baile, Microstructural and Tribological Studies of as-Sprayed and Heat-Treated HVOF Cr3C2-CoNiCrAlY Coatings with a CoNiCrAlY Bond Coat, Surf. Coat. Technol., 2015, 268, p 317-324. doi:10.1016/j.surfcoat.2014.10.039

    Article  Google Scholar 

  2. G.-C. Ji, C.-J. Li, Y.-Y. Wang, and W.-Y. Li, Microstructural Characterization and Abrasive Wear Performance of HVOF Sprayed Cr3C2-NiCr Coating, Surf. Coat. Technol., 2006, 200(24), p 6749-6757. doi:10.1016/j.surfcoat.2005.10.005

    Article  Google Scholar 

  3. D. Poirier, J.-G.G. Legoux, and R.S. Lima, Engineering HVOF-Sprayed Cr3C2-NiCr Coatings: The Effect of Particle Morphology and Spraying Parameters on the Microstructure, Properties, and High Temperature Wear Performance, J. Therm. Spray Technol., 2013, 22(2-3), p 280-289. doi:10.1007/s11666-012-9833-3

    Article  Google Scholar 

  4. E. Yun and S. Lee, Correlation of Microstructure with Hardness and Wear Resistance in Cr3C2/Stainless Steel Surface Composites Fabricated by High-Energy Electron Beam Irradiation, Mater. Sci. Eng., A, 2005, 405(1-2), p 163-172

    Article  Google Scholar 

  5. L. Baiamonte, F. Marra, S. Gazzola, P. Giovanetto, C. Bartuli, T. Valente, and G. Pulci, Thermal Sprayed Coatings for Hot Corrosion Protection of Exhaust Valves in Naval Diesel Engines, Surf. Coat. Technol., 2015, doi:10.1016/j.surfcoat.2015.10.072

    Google Scholar 

  6. Y. Ding, T. Hussain, and D.G. McCartney, High-Temperature Oxidation of HVOF Thermally Sprayed NiCr-Cr3C2 Coatings: Microstructure and Kinetic, J. Mater. Sci., 2015, 50(20), p 6808-6821. doi:10.1007/s10853-015-9238-z

    Article  Google Scholar 

  7. J.A. Picas, A. Forn, and G. Matthäus, HVOF Coatings as an Alternative to Hard Chrome for Pistons and Valves, Wear, 2006, 261(5-6), p 477-484. doi:10.1016/j.wear.2005.12.005

    Article  Google Scholar 

  8. C.T. Kunioshi, O.V. Correa, and L.V. Ramanathan, High Temperature Oxidation and Erosion-Oxidation Behaviour of HVOF Sprayed Ni-20Cr, WC-20Cr-7Ni and Cr3C2-Ni-20Cr Coatings, Surf. Eng., 2006, 22(2), p 121-127. doi:10.1179/174329406X98403

    Article  Google Scholar 

  9. B.Q. Wang and K. Luer, The Erosion-Oxidation Behavior of HVOF Cr3C2-NiCr Cermet Coating, Wear, 1994, 174(1), p 177-185

    Article  Google Scholar 

  10. B.Q. Wang and Z.R. Shui, The Hot Erosion Behavior of HVOF Chromium Carbide-Metal Cermet Coatings Sprayed with Different Powders, Wear, 2002, 253(5), p 550-557

    Article  Google Scholar 

  11. S. Matthews, Compositional Development as a Function of Spray Distance in Unshrouded/Shrouded Plasma-Sprayed Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 2014, 24(3), p 515-533. doi:10.1007/s11666-014-0212-0

    Article  Google Scholar 

  12. N. Matthews, R. Jones, and G.C. Sih, Application of Supersonic Particle Deposition to Enhance the Structural Integrity of Aircraft Structures, Sci. China Phys. Mech. Astron., 2013, 57(1), p 12-18. doi:10.1007/s11433-013-5367-z

    Article  Google Scholar 

  13. J. Yuan, C. Ma, S. Yang, Z. Yu, and H. Li, Improving the Wear Resistance of HVOF Sprayed WC-Co Coatings by Adding Submicron-Sized WC Particles at the Splats’ Interfaces, Surf. Coat. Technol., 2015, doi:10.1016/j.surfcoat.2015.11.017

    Google Scholar 

  14. S.A. Alidokht, P. Manimunda, P. Vo, S. Yue, and R.R. Chromik, Cold Spray Deposition of a Ni-WC Composite Coating and Its Dry Sliding Wear Behavior, Surf. Coat. Technol., 2016, 308, p 424-434

    Article  Google Scholar 

  15. J. Yuan, Q. Zhan, J. Huang, S. Ding, and H. Li, Decarburization Mechanisms of WC–Co during Thermal Spraying: Insights from Controlled Carbon Loss and Microstructure Characterization, Mater. Chem. Phys., 2013, 142(1), p 165-171

    Article  Google Scholar 

  16. H. Myalska, G. Moskal, and K. Szymański, Microstructure and Properties of WC-Co Coatings, Modified by Sub-Microcrystalline Carbides, Obtained by Different Methods of High Velocity Spray Processes, Surf. Coat. Technol., 2014, 260, p 303-309. doi:10.1016/j.surfcoat.2014.07.097

    Article  Google Scholar 

  17. R.C.C. Dykhuizen and M.F.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    Article  Google Scholar 

  18. A.O. Tokarev, Structure of Aluminum Powder Coatings Prepared by Cold Gasdynamic Spraying, Met. Sci. Heat Treat., 1996, 38(3), p 136-139. doi:10.1007/BF01401446

    Article  Google Scholar 

  19. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, Method and Device for Coating, European Patent 0484533 A4, 1992

  20. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394. doi:10.1016/S1359-6454(03)00274-X

    Article  Google Scholar 

  21. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808

    Article  Google Scholar 

  22. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227. doi:10.1016/S0169-4332(03)00643-3

    Article  Google Scholar 

  23. T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379

    Article  Google Scholar 

  24. R.C.C. Dykhuizen, M.F.F. Smith, D.L.L. Gilmore, R.A.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559-564. doi:10.1361/105996399770350250

    Article  Google Scholar 

  25. T. Samson, D. MacDonald, R. Fernández, and B. Jodoin, Effect of Pulsed Waterjet Surface Preparation on the Adhesion Strength of Cold Gas Dynamic Sprayed Aluminum Coatings, J. Therm. Spray Technol., 2015, 24(6), p 984-993. doi:10.1007/s11666-015-0261-z

    Article  Google Scholar 

  26. E. Irissou, J.-G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16(5-6), p 661-668. doi:10.1007/s11666-007-9086-8

    Article  Google Scholar 

  27. A. Sova, A. Papyrin, and I. Smurov, Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray, J. Therm. Spray Technol., 2009, 18(4), p 633-641. doi:10.1007/s11666-009-9359-5

    Article  Google Scholar 

  28. Q. Wang, K. Spencer, N. Birbilis, and M.-X. Zhang, The Influence of Ceramic Particles on Bond Strength of Cold Spray Composite Coatings on AZ91 Alloy Substrate, Surf. Coat. Technol., 2010, 205(1), p 50-56. doi:10.1016/j.surfcoat.2010.06.008

    Article  Google Scholar 

  29. A. Shkodkin, A. Kashirin, O. Klyuev, and T. Buzdygar, Metal Particle Deposition Stimulation by Surface Abrasive Treatment in Gas Dynamic Spraying, J. Therm. Spray Technol., 2006, 15(3), p 382-386

    Article  Google Scholar 

  30. I. Finnie and D.H. McFadden, On the Velocity Dependence of the Erosion of Ductile Metals by Solid Particles at Low Angles of Incidence, Wear, 1978, 48(1), p 181-190. doi:10.1016/0043-1648(78)90147-3

    Article  Google Scholar 

  31. A.S.M. Ang, C.C. Berndt, and P. Cheang, Deposition Effects of WC Particle Size on Cold Sprayed WC-Co Coatings, Surf. Coat. Technol., 2011, 205(10), p 3260-3267. doi:10.1016/j.surfcoat.2010.11.045

    Article  Google Scholar 

  32. M. Jafari, M.H. Enayati, M. Salehi, S.M. Nahvi, S.N. Hosseini, and C.G. Park, Influence of Nickel-Coated Nanostructured WC-Co Powders on Microstructural and Tribological Properties of HVOF Coatings, J. Therm. Spray Technol., 2014, 23(8), p 1456-1469. doi:10.1007/s11666-014-0171-5

    Article  Google Scholar 

  33. R. Lima, J. Karthikeyan, C. Kay, J. Lindemann, and C. Berndt, Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings, Thin Solid Films, 2002, 416(1-2), p 129-135. doi:10.1016/S0040-6090(02)00631-4

    Article  Google Scholar 

  34. D.E. Wolfe, T.J. Eden, J.K. Potter, and A.P. Jaroh, Investigation and Characterization of Cr3C2-Based Wear-Resistant Coatings Applied by the Cold Spray Process, J. Therm. Spray Technol., 2006, 15(3), p 400-412. doi:10.1361/105996306X124400

    Article  Google Scholar 

  35. H. Singh, T.S. Sidhu, J. Karthikeyan, and S.B.S. Kalsi, Development and Characterization of Cr3C2-NiCr Coated Superalloy by Novel Cold Spray Process, Mater. Manuf. Process., 2015, 2014, p 1-7. doi:10.1080/10426914.2014.973599

    Article  Google Scholar 

  36. D. MacDonald, R. Fernández, F. Delloro, and B. Jodoin, Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing, J. Therm. Spray Technol., 2016, doi:10.1007/s11666-016-0489-2

    Google Scholar 

  37. G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, in Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands (1983), pp. 541–547.

  38. H.-J. Choi, M. Lee, and J.Y. Lee, Application of a Cold Spray Technique to the Fabrication of a Copper Canister for the Geological Disposal of CANDU Spent Fuels, Nucl. Eng. Des., 2010, 240(10), p 2714-2720. doi:10.1016/j.nucengdes.2010.06.038

    Article  Google Scholar 

  39. S. Yin, Y. Xie, X. Suo, H. Liao, and X. Wang, Interfacial Bonding Features of Ni Coating on Al Substrate with Different Surface Pretreatments in Cold Spray, Mater. Lett., 2015, 138, p 143-147. doi:10.1016/j.matlet.2014.10.016

    Article  Google Scholar 

  40. Y. Cormier, P. Dupuis, B. Jodoin, and A. Ghaei, Finite Element Analysis and Failure Mode Characterization of Pyramidal Fin Arrays Produced by Masked Cold Gas Dynamic Spray, J. Therm. Spray Technol., 2015, 24(8), p 1549-1565. doi:10.1007/s11666-015-0317-0

    Article  Google Scholar 

  41. X. Wang, F. Feng, M.A. Klecka, M.D. Mordasky, J.K. Garofano, T. El-Wardany, A. Nardi, and V.K. Champagne, Characterization and Modeling of the Bonding Process in Cold Spray Additive Manufacturing, Addit. Manuf., 2015, 8, p 149-162. doi:10.1016/j.addma.2015.03.006

    Article  Google Scholar 

  42. P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2010, 19(3), p 620-634. doi:10.1007/s11666-009-9454-7

    Article  Google Scholar 

  43. R. Ghelichi, S. Bagherifard, D. Macdonald, I. Fernandez-Pariente, B. Jodoin, and M. Guagliano, Experimental and Numerical Study of Residual Stress Evolution in Cold Spray Coating, Appl. Surf. Sci., 2014, 288, p 26-33. doi:10.1016/j.apsusc.2013.09.074

    Article  Google Scholar 

  44. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology (Elsevier, Amsterdam, 2006). https://books.google.cl/books?id=XjZMWNVvgLAC

  45. C.-T. Fu and J.-M. Wu, Microstructure and Mechanical Properties of Cr3C2 Particulate Reinforced AI203 Matrix Composites, J. Mater. Sci., 1994, 29, p 2671-2677

    Article  Google Scholar 

  46. J.M. Shockley, S. Descartes, P. Vo, E. Irissou, and R.R. Chromik, The Influence of Al2O3 Particle Morphology on the Coating Formation and Dry Sliding Wear Behavior of Cold Sprayed Al-Al2O3 Composites, Surf. Coat. Technol., 2015, 270, p 324-333. doi:10.1016/j.surfcoat.2015.01.057

    Article  Google Scholar 

  47. A. Sova, V.F. Kosarev, A. Papyrin, and I. Smurov, Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings, J. Therm. Spray Technol., 2010, 20(1-2), p 285-291. doi:10.1007/s11666-010-9571-3

    Article  Google Scholar 

  48. R.G. Maev and E. Leshchinsky, Low Pressure Gas Dynamic Spray: Shear Localization During Particle Shock Consolidation, Thermal Spray 2006: Science, Innovation and Application on CD-ROM, B. Marple, M. Hyland, Y.-C. Lau, R. Lima, and J. Voyer, Ed., May 15-18, 2006 (Seattle, WA), ASM International, 2006, 1480 p

  49. H.A. Abdel-Aal, On the Influence of Thermal Properties on Wear Resistance of Rubbing Metals at Elevated Temperatures, J. Tribol. Am. Soc. Mech. Eng., 2000, 122(3), p 657. doi:10.1115/1.555417

    Google Scholar 

  50. D.R. Lide, CRC Handbook of Chemistry and Physics, 84th edn (Taylor & Francis, London, 2003). https://books.google.cl/books?id=kTnxSi2B2FcC

  51. M. Bauccio, ASM Engineered Materials Reference Book (ASM International, Seattle, 1994). https://books.google.cl/books?id=f3xUAAAAMAAJ.

  52. M.W.J. Chase, NIST-JANAF Thermochemical Tables (American Institute of Physics, College Park, 1998). https://books.google.cl/books?id=n5p9RAAACAAJ.

  53. E. Uhlmann, M.G. von der Schulenburg, and R. Zettier, Finite Element Modeling and Cutting Simulation of Inconel 718, CIRP Ann. Manuf. Technol., 2007, 56(1), p 61-64

    Article  Google Scholar 

  54. D. Steinberg, Equation of State and Strength Properties of Selected Materials (Lawrence Livermore National Laboratory, Livermore, 1996). https://books.google.cl/books?id=UyEXHAAACAAJ.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Fernandez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, R., Jodoin, B. Effect of Particle Morphology on Cold Spray Deposition of Chromium Carbide-Nickel Chromium Cermet Powders. J Therm Spray Tech 26, 1356–1380 (2017). https://doi.org/10.1007/s11666-017-0580-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0580-3

Keywords

Navigation