Journal of Thermal Spray Technology

, Volume 26, Issue 6, pp 1308–1355 | Cite as

Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray

  • M. R. Rokni
  • S. R. Nutt
  • C. A. Widener
  • V. K. Champagne
  • R. H. Hrabe
Review

Abstract

In the cold spray (CS) process, deposits are produced by depositing powder particles at high velocity onto a substrate. Powders deposited by CS do not undergo melting before or upon impacting the substrate. This feature makes CS suitable for deposition of a wide variety of materials, most commonly metallic alloys, but also ceramics and composites. During processing, the particles undergo severe plastic deformation and create a more mechanical and less metallurgical bond with the underlying material. The deformation behavior of an individual particle depends on multiple material and process parameters that are classified into three major groups—powder characteristics, geometric parameters, and processing parameters, each with their own subcategories. Changing any of these parameters leads to evolution of a different microstructure and consequently changes the mechanical properties in the deposit. While cold spray technology has matured during the last decade, the process is inherently complex, and thus, the effects of deposition parameters on particle deformation, deposit microstructure, and mechanical properties remain unclear. The purpose of this paper is to review the parameters that have been investigated up to now with an emphasis on the existent relationships between particle deformation behavior, microstructure, and mechanical properties of various cold spray deposits.

Keywords

cold spray high-pressure cold spray mechanical properties microstructure evolution particle deformation 

References

  1. 1.
    F. Gartner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15, p 223-232CrossRefGoogle Scholar
  2. 2.
    H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394CrossRefGoogle Scholar
  3. 3.
    T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742CrossRefGoogle Scholar
  4. 4.
    A.N. Papyrin, S. Klinkov, A. Alkhimov, and V. Fomin, Ed., Cold Spray Technology, Elsevier, Amsterdam, 2007Google Scholar
  5. 5.
    V.K. Champagne, Ed., The CS Materials Deposition Process, Woodhead Publishing Ltd., Cambridge, England, 2007Google Scholar
  6. 6.
    P.A. Alkhimov, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, Gas-Dynamic Spray Method for Applying a Coating, US Patent 5, 302, 414, April 12, 1994Google Scholar
  7. 7.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688CrossRefGoogle Scholar
  8. 8.
    M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219, p 211-227CrossRefGoogle Scholar
  9. 9.
    M.F. Smith, Comparing cold spray with thermal spray coating technologies, The Cold Spray Materials Deposition Process: Fundamentals and Applications, 1st ed., V.K. Champagne, Ed., Woodhead, Cambridge, 2007, Google Scholar
  10. 10.
    J. Villafuerte, Modern Cold Spray: Materials, Process, and Applications, Springer, Berlin, 2015CrossRefGoogle Scholar
  11. 11.
    R. Ghelichi, D. MacDonald, S. Bagherifard, H. Jahed, M. Guagliano, and B. Jodoin, Microstructure and Fatigue Behavior of Cold Spray Coated Al5052, Acta Mater., 2012, 60, p 6555-6561CrossRefGoogle Scholar
  12. 12.
    G. Shayegan, H. Mahmoudi, R. Ghelichi, J. Villafuerte, J. Wang, M. Guagliano, and H. Jahed, Residual Stress Induced by Cold Spray Coating of Magnesium AZ31B Extrusion, Mater. Des., 2014, 60, p 72-84CrossRefGoogle Scholar
  13. 13.
    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, New York, 1995Google Scholar
  14. 14.
    L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, New York, 2008CrossRefGoogle Scholar
  15. 15.
    J. Davis (Ed.), Handbook of Thermal Spray Technology, ASM International, printed in the United States of America, 2004Google Scholar
  16. 16.
    N.M. Chavan, B. Kiran, A. Jyothirmayi, P.S. Phani, and G. Sundararajan, The Corrosion Behavior of Cold Sprayed Zinc Coatings on Mild Steel Substrate, J. Therm. Spray. Technol., 2013, 22, p 463-470CrossRefGoogle Scholar
  17. 17.
    J. Karthikeyan, The advantages and disadvantages of cold spray coating process, The Cold Spray Materials Deposition Process: Fundamentals and Applications, 1st ed., V.K. Champagne, Ed., Woodhead, Cambridge, 2007, Google Scholar
  18. 18.
    T. Schmidt, H. Assadi, F. Gartner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray. Technol., 2009, 18, p 794-809CrossRefGoogle Scholar
  19. 19.
    J. Karthikeyan, Cold Spray Technology: International Status and Efforts, ASB Industries, Barberton, 2004Google Scholar
  20. 20.
    V.K. Champagne, M.K. West, M.R. Rokni, T. Curtis, V. Champagne, and B. McNally, Joining of Cast ZE41A Mg to Wrought 6061 Al by the Cold Spray Process and Friction Stir Welding, J. Therm. Spray. Technol., 2016, 25, p 143-159CrossRefGoogle Scholar
  21. 21.
    E. Irissou, J.G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray. Technol., 2007, 16, p 661-668CrossRefGoogle Scholar
  22. 22.
    M. Yandouzi, P. Richer, and B. Jodoin, SiC Particulate Reinforced Al-12Si Alloy Composite Coatings Produced by the Pulsed Gas Dynamic Spray Process: Microstructure and Properties, Surf. Coat. Technol., 2009, 203, p 3260-3270CrossRefGoogle Scholar
  23. 23.
    N.M. Melendez and A.G. McDonald, Development of WC-Based Metal Matrix Composite Coatings Using Low-Pressure Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2013, 214, p 101-109CrossRefGoogle Scholar
  24. 24.
    H. Lee, H. Shin, and K. Ko, Effects of Gas Pressure of Cold Spray on the Formation of Al-Based Intermetallic Compound, J. Therm. Spray. Technol., 2010, 19, p 102-109CrossRefGoogle Scholar
  25. 25.
    D. Seo, M. Sayar, and K. Ogawa, SiO2 and MoSi2 Formation on Inconel 625 Surface via SiC Coating Deposited by Cold Spray, Surf. Coat. Technol., 2012, 206, p 2851-2858CrossRefGoogle Scholar
  26. 26.
    K. Ogawa, K. Ichimura, Y. Ichikawa, S. Ohno, and N. Onda, Characterization of Low-Pressure Cold-Sprayed Aluminum Coatings, J. Therm. Spray. Technol., 2008, 17, p 728-735CrossRefGoogle Scholar
  27. 27.
    J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, 2004Google Scholar
  28. 28.
  29. 29.
    US ARMY RESEARCH LAB ARL. 2008.http://www.arl.army.mil/www/pages/375/MIL-STD-3021.pdf. Accessed 2013
  30. 30.
    R. Maev and V. Leshchynsky, Air Gas Dynamic Spraying of Powder Mixtures: Theory and Application, J. Therm. Spray. Technol., 1998, 7, p 205-212CrossRefGoogle Scholar
  31. 31.
    M.R. Rokni, C.A. Widener, V.K. Champagne, and G.A. Crawford, Microstructure and Mechanical Properties of Cold Sprayed 7075 Deposition During Non-isothermal Annealing, Surf. Coat. Technol., 2015, 276, p 305-315CrossRefGoogle Scholar
  32. 32.
    M.R. Rokni, C.A. Widener, G.A. Crawford, and M.K. West, An Investigation into Microstructure and Mechanical Properties of Cold Sprayed 7075 Al Deposition, Mater. Sci. Eng. A, 2015, 625, p 19-27CrossRefGoogle Scholar
  33. 33.
    J. Vlcek, L. Gimeno, H. Huber, and E. Lugscheider, A Systematic Approach to Material Eligibility for the Cold-Spray Process, J. Therm. Spray Technol., 2005, 14, p 125-133CrossRefGoogle Scholar
  34. 34.
    M. Song, H. Araki, S. Kuroda, and K. Sakaki, Reaction Layer at the Interface Between Aluminium Particles and a Glass Substrate Formed by Cold Spray, J. Phys. D Appl. Phys., 2013, 46, p 195301CrossRefGoogle Scholar
  35. 35.
    U. Kruger and R. Ullrich, Cold Gas Spraying Method. US Patent 8012601 B2, 6 Sept, 2011Google Scholar
  36. 36.
    A. Debiccari, J.D. Haynes, D.A. Hobbs, and J. Karthikeyan, Cold sprayed Metal Matrix Composites. European Patent 1942209 B1, 3 Aug, 2011Google Scholar
  37. 37.
    K. Ko, H. Lee, J.H. Lee, J. Lee, and Y. Yu, Method of Preparing Wear-Resistant Coating Layer Comprising Metal Matrix Composite and Coating Layer Prepared Thereby. US Patent 8486496, 24 Nov, 2013Google Scholar
  38. 38.
    T. Han, B.A. Gillispie, and Z.B. Zhao, An Investigation on Powder Injection in the High-Pressure Cold Spray Process, J. Therm. Spray Technol., 2009, 18, p 320-330CrossRefGoogle Scholar
  39. 39.
    M.R. Rokni, C.A. Widener, and G.A. Crawford, Microstructural Evolution of 7075 Al Gas Atomized Powder and High-pressure Cold Sprayed Deposition, Surf. Coat. Technol., 2014, 251, p 254-263CrossRefGoogle Scholar
  40. 40.
    M.R. Rokni, C.A. Widener, A.T. Nardi, and V.K. Champagne, Nano Crystalline High Energy Milled 5083 Al Powder Deposited Using Cold Spray, Appl. Surf. Sci., 2014, 305, p 797-804CrossRefGoogle Scholar
  41. 41.
    M.R. Rokni, C.A. Widener, and V.R. Champagne, Microstructural Stability of Ultrafine Grained Cold Sprayed 6061 Aluminum Alloy, Appl. Surf. Sci., 2014, 290, p 482-489CrossRefGoogle Scholar
  42. 42.
    M.R. Rokni, C.A. Widener, S.P. Ahrenkiel, B.K. Jasthi, and V.K. Champagne, Annealing Behaviour of 6061 Aluminium Deposited by High Pressure Cold Spray, Surf. Eng., 2014, 30, p 361-368CrossRefGoogle Scholar
  43. 43.
    K. Kim, M. Watanabe, J. Kawakita, and S. Kuroda, Grain Refinement in a Single Titanium Powder Particle Impacted at High Velocity, Scr. Mater., 2008, 59, p 768-771CrossRefGoogle Scholar
  44. 44.
    G. Bae, K. Kang, J.J. Kim, and C. Lee, Nanostructure Formation and Its Effects on the Mechanical Properties of Kinetic Sprayed Titanium Coating, Mater. Sci. Eng. A, 2010, 527, p 6313-6319CrossRefGoogle Scholar
  45. 45.
    C.K.S. Moy, J. Cairney, G. Ranzi, M. Jahedi, and S.P. Ringer, Investigating the Microstructure and Composition of Cold Gas-Dynamic Spray (CGDS) Ti Powder Deposited on Al 6063 Substrate, Surf. Coat. Technol., 2010, 204, p 3739-3749CrossRefGoogle Scholar
  46. 46.
    Y. Zou, W. Qin, E. Irissou, J.G. Legoux, S. Yue, and J.A. Szpunar, Dynamic Recrystallization in the Particle/Particle Interfacial Region of Cold-Sprayed Nickel Coating: Electron Backscatter Diffraction Characterization, Scr. Mater., 2009, 61, p 899-902CrossRefGoogle Scholar
  47. 47.
    C.J. Li and W.Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167, p 278-283CrossRefGoogle Scholar
  48. 48.
    D. Goldbaum, J. Ajaja, R.R. Chromik, W. Wong, S. Yue, E. Irissou, and J.G. Legoux, Mechanical Behavior of Ti Cold Spray Coatings Determined by a Multi-scale Indentation Method, Mater. Sci. Eng. A, 2011, 530, p 253-265CrossRefGoogle Scholar
  49. 49.
    G. Bolelli, B. Bonferroni, H. Koivuluoto, L. Lusvarghi, and P. Vuoristo, Depth-Sensing Indentation for Assessing the Mechanical Properties of Cold-Sprayed Ta, Surf. Coat. Technol., 2010, 205, p 2209-2217CrossRefGoogle Scholar
  50. 50.
    C.J. Li and W.Y. Li, Microstructure Evolution of Cold-Sprayed Coating During Deposition and Through Post-spraying Heat Treatment, Trans. Nonferrous Met. Soc. China, 2004, 14, p 49-54Google Scholar
  51. 51.
    T. Hussain, Cold Spraying of Titanium: A Review of Bonding Mechanisms, Microstructure and Properties, In Key Eng. Maters., 2013, 533, p 53-90CrossRefGoogle Scholar
  52. 52.
    P. Coddet, C. Verdy, C. Coddet, and F. Debray, Effect of Cold Work, Second Phase Precipitation and Heat Treatments on the Mechanical Properties of Copper-Silver Alloys Manufactured by Cold Spray, Mater. Sci. Eng. A, 2015, 637, p 40-47CrossRefGoogle Scholar
  53. 53.
    H.Y. Lee, S.H. Jung, S.Y. Lee, and K.H. Ko, Alloying of Cold-Sprayed Al-Ni Composite Coatings by Post-Annealing, Appl. Surf. Sci., 2007, 253, p 3496-3502CrossRefGoogle Scholar
  54. 54.
    C.J. Li, G.J. Yang, P.H. Gao, J. Ma, Y.Y. Wang, and C.X. Li, Characterization of Nanostructured WC-Co Deposited by Cold Spraying, J. Therm. Spray Technol., 2007, 16, p 1011-1020CrossRefGoogle Scholar
  55. 55.
    P. Richer, A. Zúñiga, M. Yandouzi, and B. Jodoin, CoNiCrAlY Microstructural Changes Induced During Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2008, 203, p 364-371CrossRefGoogle Scholar
  56. 56.
    C.J. Li, Y. Li, L.K. Xing, G.J. Yang, and C.X. Li, Microstructure Features of Cold-Sprayed NiCoCrAlTaY Coating and Its High Temperature Oxidation Behavior, Mater. Sci. Forum, 2011, 686, p 595-602CrossRefGoogle Scholar
  57. 57.
    C.J. Li, W.Y. Li, and Y.Y. Wang, Formation of Metastable Phases in Cold-Sprayed Soft Metallic Deposit, Surf. Coat. Technol., 2005, 198, p 469-473CrossRefGoogle Scholar
  58. 58.
    Y. Xiong, K. Kang, G. Bae, S. Yoon, and C. Lee, Dynamic Amorphization and Recrystallization of Metals in Kinetic Spray Process, Appl. Phys. Lett., 2008, 92, p 194101CrossRefGoogle Scholar
  59. 59.
    X.T. Luo, G.J. Yang, C.-J. Li, and K. Kondoh, High Strain Rate Induced Localized Amorphization in Cubic BN/NiCrAl Nanocomposite Through High Velocity Impact, Scr. Mater., 2011, 65, p 581-584CrossRefGoogle Scholar
  60. 60.
    Q. Wang, D. Qiu, Y. Xiong, N. Birbilis, and M.X. Zhang, High Resolution Microstructure Characterization of the Interface Between Cold Sprayed Al Coating and Mg Alloy Substrate, Surf. Sci., 2014, 289, p 366-369CrossRefGoogle Scholar
  61. 61.
    G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57, p 5654-5666CrossRefGoogle Scholar
  62. 62.
    W.B. Choi, L. Li, V. Luzin, R. Neiser, T. Gnaupel-Herold, H.J. Prask, S. Sampath, and A. Gouldstone, Integrated Characterization of Cold Sprayed Aluminum Coatings, Acta Mater., 2007, 55, p 857-866CrossRefGoogle Scholar
  63. 63.
    F.F. Lange, Powder Processing Science and Technology for Increased Reliability, J. Am. Ceram. Soc., 1989, 72, p 3-15CrossRefGoogle Scholar
  64. 64.
    H. Koivuluoto and P. Vuoristo, Effect of Powder Type and Composition on Structure and Mechanical Properties of Cu+Al2O3 Coatings Prepared by Using Low-Pressure Cold Spray Process, J. Therm. Spray Technol., 2010, 19, p 1081-1092CrossRefGoogle Scholar
  65. 65.
    S. Kumar, G. Bae, K. Kang, S. Yoon, and C. Lee, Effect of Powder State on the Deposition Behaviour and Coating Development in Kinetic Spray Process, J. Phys. D Appl. Phys., 2009, 42, p 1-8Google Scholar
  66. 66.
    W. Wong, P. Vo, E. Irissou, A.N. Ryabinin, J.-G. Legoux, and S. Yue, Effect of Particle Morphology and Size Distribution on Cold-Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2013, 7, p 1140-1153CrossRefGoogle Scholar
  67. 67.
    W. Wong, A. Rezaeian, E. Irissou, J.G. Legoux, and S. Yue, Cold Spray Characteristics of Commercially Pure Ti and Ti-6Al-4V, Adv. Mater. Res., 2010, 89, p 639-644CrossRefGoogle Scholar
  68. 68.
    K. Kim, M. Watanabe, and S. Kuroda, Bonding Mechanisms of Thermally Softened Metallic Powder Particles and Substrates Impacted at High Velocity, Surf. Coat. Technol., 2010, 204, p 2175-2180CrossRefGoogle Scholar
  69. 69.
    M. Fukumoto, M. Mashiko, M. Yamada, and E. Yamaguchi, Deposition Behavior of Copper Fine Particles onto Flat Substrate Surface in Cold Spraying, J. Therm. Spray Technol., 2010, 19, p 89-94CrossRefGoogle Scholar
  70. 70.
    C.J. Li, H.T. Wang, Q. Zhang, G.J. Yang, W.Y. Li, and H.L. Liao, Influence of Spray Materials and Their Surface Oxidation on the Critical Velocity in Cold Spraying, J. Therm. Spray Technol., 2010, 19, p 95-101CrossRefGoogle Scholar
  71. 71.
    K. Kang, S. Yoon, Y. Ji, and C.H. Lee, Oxidation Dependency of Critical Velocity for Aluminum Feedstock Deposition in Kinetic Spraying Process, Mater. Sci. Eng. A, 2008, 486, p 300-307CrossRefGoogle Scholar
  72. 72.
    W.Y. Li, C.J. Li, and H.L. Liao, Significant Influence of Particle Surface Oxidation on Deposition Efficiency, Interface Microstructure and Adhesive Strength of Cold-Sprayed Copper Coatings, Appl. Surf. Sci., 2010, 256, p 4953-4958CrossRefGoogle Scholar
  73. 73.
    Q. Zhang, C.J. Li, C.X. Li, G.J. Yang, and S.C. Lui, Study of Oxidation Behavior of Nanostructured NiCrAlY Bond Coatings Deposited by Cold Spraying, Surf. Coat. Technol., 2008, 202, p 3378-3384CrossRefGoogle Scholar
  74. 74.
    C. Borchers, F. Gartner, T. Stoltenhoff, H. Assadi, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93, p 10064-10070CrossRefGoogle Scholar
  75. 75.
    K. Balani, A. Agarwal, S. Seal, and J. Karthikeyan, Transmission Electron Microscopy of Cold Sprayed 1100 Aluminum Coating, Scr. Mater., 2005, 53, p 845-850CrossRefGoogle Scholar
  76. 76.
    R.C. McCunne, W.T. Donlon, O.O. Popoola, and E.L. Cartwright, Characterization of Copper Layer Produced by Cold Gas Dynamic Spraying, J. Therm. Spray Technol., 2000, 9, p 73-82CrossRefGoogle Scholar
  77. 77.
    S. Yin, X. Wang, W. Li, H. Liao, and H. Jie, Deformation Behavior of the Oxide Film on the Surface of Cold Sprayed Powder Particle, Appl. Surf. Sci., 2012, 259, p 294-300CrossRefGoogle Scholar
  78. 78.
    W.Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C.J. Li, and C. Coddet, Effect of Standoff Distance on Coating Deposition Characteristics in Cold Spraying, Mater. Des., 2008, 29, p 297-304CrossRefGoogle Scholar
  79. 79.
    T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11, p 542-550CrossRefGoogle Scholar
  80. 80.
    M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 139, p 222-230CrossRefGoogle Scholar
  81. 81.
    S.H. Zahiri, W. Yang, and M. Jahedi, Characterization of Cold Spray Titanium Supersonic Jet, J. Therm. Spray Technol., 2009, 18, p 110-117CrossRefGoogle Scholar
  82. 82.
    J. Pattison, S. Celotto, A. Khan, and W. O’Neill, StandOff distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2008, 202, p 1443-1454CrossRefGoogle Scholar
  83. 83.
    X.J. Ning, Q.S. Wang, Z. Ma, and H.J. Kim, Numerical Study of In-Flight Particle Parameters in Low-Pressure Cold Spray Process, J. Therm. Spray Technol., 2010, 19, p 1211-1217CrossRefGoogle Scholar
  84. 84.
    C. Chen, Y. Xie, S. Yin, M.P. Planche, S. Deng, R. Lupoi, and H. Liao, Evaluation of the Interfacial Bonding Between Particles and Substrate in Angular Cold Spray, Mater. Lett., 2016, 173, p 76-79CrossRefGoogle Scholar
  85. 85.
    W.Y. Li, S. Yin, and X.F. Wang, Numerical Investigations of the Effect of Oblique Impact on Particle Deformation in Cold Spraying by the SPH Method, Appl. Surf. Sci., 2010, 256, p 3725-3734CrossRefGoogle Scholar
  86. 86.
    B. Samareh, O. Stier, V. Lüthen, and A. Dolatabadi, Assessment of CFD Modeling via Flow Visualization in Cold Spray Process, J. Therm. Spray Technol., 2009, 18, p 934-943CrossRefGoogle Scholar
  87. 87.
    K. Binder, J. Gottschalk, M. Kollenda, F. Gartner, and T. Klassen, Influence of Impact Angle and Gas Temperature on Mechanical Properties of Titanium Cold Spray Deposits, J. Therm. Spray Technol., 2011, 20, p 234-242CrossRefGoogle Scholar
  88. 88.
    S. Yin, X. Wang, W. Li, and B. Xu, Numerical Study on the Effect of Substrate Angle on Particle Impact Velocity and Normal Velocity Component in Cold Gas Dynamic Spraying Based on CFD, J. Therm. Spray Technol., 2010, 19, p 1155-1162CrossRefGoogle Scholar
  89. 89.
    B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape, J. Therm. Spray Technol., 2007, 16, p 634-642CrossRefGoogle Scholar
  90. 90.
    M.H. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi, and K. Ogawa, Influence of Particle Velocity on Adhesion of Cold-Sprayed Splats, J. Therm. Spray Technol., 2009, 18, p 331-342CrossRefGoogle Scholar
  91. 91.
    M.W. Lee, J.J. Park, D.Y. Kim, S.S. Yoon, H.Y. Kim, S.C. James, S. Chandra, and T. Coyle, Numerical Studies on the Effects of Stagnation Pressure and Temperature on Supersonic Flow Characteristics in Cold Spray Applications, J. Therm. Spray Technol., 2011, 20, p 1085-1097CrossRefGoogle Scholar
  92. 92.
    S. Li, B. Muddle, M. Jahedi, and J. Soria, A Numerical Investigation of the Cold Spray Process Using Underexpanded and Overexpanded Jets, J. Therm. Spray Technol., 2012, 21, p 108-120CrossRefGoogle Scholar
  93. 93.
    X. Suo, S. Yin, M.-P. Planche, T. Liu, and H. Liao, Strong Effect of Carrier Gas Species on Particle Velocity During Cold Spray Processes, Surf. Coat. Technol., 2015, 268, p 90-93CrossRefGoogle Scholar
  94. 94.
    P. Cavaliere and A. Silvello, Processing Parameters Affecting Cold Spay Coatings Performances, Int. J. Adv. Manuf. Technol., 2014, 71, p 263-277CrossRefGoogle Scholar
  95. 95.
    T. Stoltenhoff, H. Kreye, and H.J. Richter, From Particle Acceleration to Impact and Bonding In Cold Spraying, J. Therm. Spray Technol., 2003, 11, p 542-550CrossRefGoogle Scholar
  96. 96.
    H. Lee, H. Shin, S. Lee, and K. Ko, Effect of Gas Pressure on Al Coatings by Cold Gas Dynamic Spray, Mater. Lett., 2008, 62, p 1579-1581CrossRefGoogle Scholar
  97. 97.
    X. Meng, J. Zhang, J. Zhao, Y. Liang, and Y. Zhang, Influence of Gas Temperature on Microstructure and Properties of Cold Spray 304SS Coating, J. Mater. Sci. Technol., 2011, 27, p 809-815CrossRefGoogle Scholar
  98. 98.
    A. Sova, A. Okunkova, S. Grigoriev, and I. Smurov, Velocity of the Particles Accelerated by a Cold Spray Micronozzle: Experimental Measurements and Numerical Simulation, J. Therm. Spray Technol., 2013, 22, p 75-80CrossRefGoogle Scholar
  99. 99.
    H. Lee, H. Shin, and K. Ko, Influence of Gas Temperature on Microstructure and Properties of Cold Spray 304SS Coating, J. Therm. Spray Technol., 2010, 19, p 102-109CrossRefGoogle Scholar
  100. 100.
    M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 368, p 222-230CrossRefGoogle Scholar
  101. 101.
    S.H. Zahiri, D. Fraser, S. Gulizia, and M. Jahedi, Effect of Processing Conditions on Porosity Formation in Cold Gas Dynamic Spraying of Copper, J. Therm. Spray Technol., 2006, 15, p 422-430CrossRefGoogle Scholar
  102. 102.
    G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56, p 4858-4868CrossRefGoogle Scholar
  103. 103.
    Y. Xiong, G. Bae, X. Xiong, and C. Lee, The Effects of Successive Impacts and Cold Welds on the Deposition Onset of Cold Spray Coatings, J. Therm. Spray Technol., 2010, 19, p 575-585CrossRefGoogle Scholar
  104. 104.
    K.R. Ernst, J. Braeutigam, F. Gaertner, and T. Klassen, Effect of Substrate Temperature on Cold-Gas-Sprayed Coatings on Ceramic Substrates, J. Therm. Spray Technol., 2012, 22, p 422-432CrossRefGoogle Scholar
  105. 105.
    P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2010, 19, p 620-634CrossRefGoogle Scholar
  106. 106.
    S. Yin, X.F. Wang, W.Y. Li, and H. Jie, Effect of Substrate Hardness on the Deformation Behavior of Subsequently Incident Particles in Cold Spraying, Appl. Surf. Sci., 2011, 257, p 7560-7565CrossRefGoogle Scholar
  107. 107.
    S. Yin, X. Suo, Z. Guo, H. Liao, and X. Wang, Deposition Features of Cold Sprayed Copper Particles on Preheated Substrate, Surf. Coat. Technol., 2015, 268, p 252-256CrossRefGoogle Scholar
  108. 108.
    J. Legoux, E. Irissou, and C. Moreau, J. Therm. Spray Technol., 2007, 16, p 619-626CrossRefGoogle Scholar
  109. 109.
    D. Goldbaum, J. Shockley, R. Chromik, A. Rezaeian, S. Yue, J. Legoux, and E. Irissou, J. Therm. Spray Technol., 2012, 21, p 288-303CrossRefGoogle Scholar
  110. 110.
    S. Yin, Y. Xie, X. Suo, H. Liao, and X. Wang, Interfacial Bonding Features of Ni Coating on Al Substrate with Different Surface Pretreatments in Cold Spray, Mater. Lett., 2015, 138, p 143-147CrossRefGoogle Scholar
  111. 111.
    P. Richter, B. Jodoin, K. Taylor, E. Sansoucy, M. Johnson, L. Ajdelsztajn, Thermal Spray: Exploring Its Surfacing Potential, E. Lugscheider, Ed., May 2-4, 2005 (Basel, Switzerland), ASM International, 2005Google Scholar
  112. 112.
    R. Ghelichi, S. Bagherifard, D. MacDonald, M. Brochu, H. Jahed, B. Jodoin, and M. Guagliano, Fatigue Strength of Al Alloy Cold Sprayed with Nanocrystalline Powders, Int. J. Fatigue, 2014, 65, p 51-57CrossRefGoogle Scholar
  113. 113.
    P. Richer and L. Ajdelsztajn Jodoin, Substrate Roughness and Thickness Effects on Cold Spray Nanocrystalline Al-Mg Coatings, J. Therm. Spray Technol., 2006, 15, p 246-254CrossRefGoogle Scholar
  114. 114.
    T.S. Price, P.H. Shipway, and D.G. McCartney, Effect of Cold Spray Deposition of a Titanium Coating on Fatigue Behavior of a Titanium Alloy, J. Therm. Spray Technol., 2006, 15, p 507-512CrossRefGoogle Scholar
  115. 115.
    T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18, p 364-379CrossRefGoogle Scholar
  116. 116.
    T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15, p 263-272CrossRefGoogle Scholar
  117. 117.
    J.W. Wu, J.G. Yang, H.Y. Fang, S. Yoon, and C. Lee, The Bond Strength of Al-Si Coating on Mild Steel by Kinetic Spraying Deposition, Appl. Surf. Sci., 2006, 252, p 7809-7814CrossRefGoogle Scholar
  118. 118.
    H. Makinen, J. Lagerbom, P. Vuoristo, Thermal Spray: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y. Lau, C. Li, R.S. Lima, G. Montavon, Eds., May 14-16, 2007 (Beijing, People’s Republic of China), ASM International, 2007, p. 31-36Google Scholar
  119. 119.
    F. Wang, B.Q. Xiong, Y.G. Zhang, H.W. Liu, and X.Q. He, Microstructural Development of Spray-Deposited Al-Zn-Mg-Cu Alloy During Subsequent Processing, J. Alloys Compd., 2009, 477, p 616-621CrossRefGoogle Scholar
  120. 120.
    E.J. Lavernia, The Evolution of Microstructure During Spray Atomization and Deposition, Int. J. Rapid Solid., 1989, 5, p 47-85Google Scholar
  121. 121.
    S. Annavarapu and R.D. Doherty, Evolution of Microstructure in Spray Casting, Int. J. Powder Met., 1993, 29, p 331-343Google Scholar
  122. 122.
    L. Ajdelsztajn, A. Zuniga, B. Jodoin, and E.J. Lavernia, Cold Gas Dynamic Spraying of a High Temperature Al Alloy, Surf. Coat. Technol., 2006, 201, p 2109-2116CrossRefGoogle Scholar
  123. 123.
    L. Ajdelsztajn, B. Jodoin, P. Richer, E. Sansoucy, and E.J. Lavernia, Cold Gas Dynamic Spraying of Iron-Base Amorphous Alloy, J. Therm. Spray Technol., 2006, 15, p 495-500CrossRefGoogle Scholar
  124. 124.
    G. Berube, M. Yandouzi, A. Zuniga, L. Ajdelsztajn, J. Villafuerte, and B. Jodoin, Phase Stability of Al-5Fe-V-Si Coatings Produced by Cold Gas Dynamic Spray Process Using Rapidly Solidified Feedstock Materials, J. Therm. Spray Technol., 2012, 21, p 240-254CrossRefGoogle Scholar
  125. 125.
    Y.Y. Zhang, X.K. Wu, H. Cui, and J.S. Zhang, Cold-Spray Processing of a High Density Nanocrystalline Aluminum Alloy 2009 Coating Using a Mixture of As-Atomized and As-Cryomilled Powders, J. Therm. Spray Technol., 2011, 20, p 1125-1132CrossRefGoogle Scholar
  126. 126.
    R. Trivedi, F. Jin, and I.E. Anderson, Dynamical Evolution of Microstructure in Finely Atomized Droplets of Al-Si Alloys, Acta Mater., 2003, 51, p 289-300CrossRefGoogle Scholar
  127. 127.
    Y. Zou, D. Goldbaum, J.A. Szpunar, and S. Yue, Microstructure and Nanohardness of Cold-Sprayed Coatings: Electron Backscattered Diffraction and Nanoindentation Studies, Scr. Mater., 2010, 62, p 395-398CrossRefGoogle Scholar
  128. 128.
    P.S. Phani, V. Vishnukanthan, and G. Sundararajan, Effect of Heat Treatment on Properties of Cold Sprayed Nanocrystalline Copper Alumina Coatings, Acta Mater., 2007, 55, p 4741-4751CrossRefGoogle Scholar
  129. 129.
    E. Irissou, J.G. Legoux, A. Ryabinin, B. Jodoin, and C. Moreau, Review on Cold Spray Process and Technology: Part I—Intellectual Property, J. Therm. Spray Technol., 2008, 4, p 495-516CrossRefGoogle Scholar
  130. 130.
    S. Yin, X. Suo, Y. Xie, W. Li, R. Lupoi, and H. Liao, Effect of Substrate Temperature on Interfacial Bonding for Cold Spray of Ni onto Cu, J. Mater. Sci., 2015, 50, p 7448-7457CrossRefGoogle Scholar
  131. 131.
    H. Koivuluoto, J. Lagerbom, and P. Vuoristo, Microstructural Studies of Cold Sprayed Copper, Nickel, and Nickel-30% Copper Coatings, J. Therm. Spray Technol., 2007, 16, p 488-497CrossRefGoogle Scholar
  132. 132.
    H. Koivuluoto, J. Lagerbom, M. Kylmalahti, and P. Vuoristo, Microstructure and Mechanical Properties of Low-Pressure Cold-Sprayed (LPCS) Coatings, J. Therm. Spray Technol., 2008, 17, p 721-727CrossRefGoogle Scholar
  133. 133.
    T. Kairet, M. Degrez, F. Campana, and J.P. Janssen, Influence of the Powder Size Distribution on the Microstructure of Cold-Sprayed Copper Coatings Studied by X-ray Diffraction, J. Therm. Spray Technol., 2007, 16, p 610-618CrossRefGoogle Scholar
  134. 134.
    T. Stoltenhoff, C. Borchers, F. Gartner, and H. Kreye, Microstructures and Key Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200, p 4947-4960CrossRefGoogle Scholar
  135. 135.
    B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, and E.J. Lavernia, Effect of Particle Size, Morphology, and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings, Surf. Coat. Technol., 2006, 201, p 3422-3429CrossRefGoogle Scholar
  136. 136.
    G. Bae, K. Kang, H. Na, J.J. Kim, and C. Lee, Effect of Particle Size on the Microstructure and Properties of Kinetic Sprayed Nickel Coatings, Surf. Coat. Technol., 2010, 204, p 3326-3335CrossRefGoogle Scholar
  137. 137.
    G.S. Upadhyaya, Powder Metallurgy Technology, Cambridge Int Science Publishing, Cambridge, 1997Google Scholar
  138. 138.
    P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, and M.W. Mahoney, Friction Stir Processing: A Tool to Homogenize Nanocomposite Aluminum Alloys, Scr. Mater., 2001, 44, p 61-66CrossRefGoogle Scholar
  139. 139.
    R. Morgan, P. Fox, J. Pattison, C. Sutcliffe, and W. O’Neill, Analysis of Cold Gas Dynamically Sprayed Aluminium Deposits, Mater. Lett., 2004, 58, p 1317-1320CrossRefGoogle Scholar
  140. 140.
    B. AL-Mangour, P. Vo, R. Mongrain, E. Irissou, and S. Yue, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications, J. Therm. Spray Technol., 2014, 24, p 641-652CrossRefGoogle Scholar
  141. 141.
    B. Al-Mangour, R. Mongrain, E. Irissou, and S. Yue, Improving the Strength and Corrosion Resistance of 316L Stainless Steel for Biomedical Applications Using Cold Spray, Surf. Coat. Technol., 2013, 216, p 297-307CrossRefGoogle Scholar
  142. 142.
    G. Sundararajan, P. Sudharshan Phani, A. Jyothirmayi, and R.C. Gundakaram, The Influence of Heat Treatment on the Microstructural, Mechanical and Corrosion Behaviour of Cold Sprayed SS 316L Coatings, J. Mater. Sci., 2009, 44, p 2320-2326CrossRefGoogle Scholar
  143. 143.
    M.R. Rokni, C.A. Widener, and V.K. Champagne, Microstructural Evolution of 6061 Aluminum Gas-Atomized Powder and High-Pressure Cold-Sprayed Deposition, J. Therm. Spray Technol., 2014, 23, p 514-524CrossRefGoogle Scholar
  144. 144.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004Google Scholar
  145. 145.
    Y.Y. Zhang and J.S. Zhang, Recrystallization in the Particles Interfacial Region of the Cold-Sprayed Aluminum Coating: Strain-Induced Boundary Migration, Mater. Letters, 2011, 65, p 1856-1858CrossRefGoogle Scholar
  146. 146.
    N. Hansen and D.J. Jensen, Development of Microstructure in FCC Metals During Cold Work, Philos. Trans. R. Soc. S-A, 1999, 357, p 1447-1469CrossRefGoogle Scholar
  147. 147.
    N. Hansen, New discoveries in deformed metals, Metall. Mater. Trans. A, 2001, 32, p 2917-2935CrossRefGoogle Scholar
  148. 148.
    H.J. Mcqueen and H. Mecking, Hot Rolling Deformation and Recrystallization Textures in FCC Metals, Z. Metallkd., 1987, 78, p 387-396Google Scholar
  149. 149.
    C.M. Sellars, Recrystallization of Metals During Hot Deformation, Philos. Trans. R. Soc. S-A, 1978, 288, p 147CrossRefGoogle Scholar
  150. 150.
    C. Maurice and J.H. Driver, Hot Rolling Textures of FCC metals—Part I. Experimental Results on Al Single and Polycrystals, Acta Mater., 1997, 45, p 4627-4638CrossRefGoogle Scholar
  151. 151.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater. Sci., 2000, 45, p 103-189CrossRefGoogle Scholar
  152. 152.
    O.V. Mishin, V.Y. Gertsman, R.Z. Valiev, and G. Gottstein, Scr. Mater., 1996, 35, p 873-878CrossRefGoogle Scholar
  153. 153.
    O.V. Mishin and G. Gottstein, Microstructural Aspects of Rolling Deformation in Ultrafine-Grained Copper, PHILOS MAG A, 1998, 78, p 373-388CrossRefGoogle Scholar
  154. 154.
    K. Neishi, Z. Horita, and T.G. Langdon, Grain Refinement of Pure Nickel Using Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2002, 325, p 54-58CrossRefGoogle Scholar
  155. 155.
    Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, The Process of Grain Refinement in Equal-Channel Angular Pressing, Acta Mater., 1997, 45, p 4733-4741CrossRefGoogle Scholar
  156. 156.
    C.P. Chang, P.L. Sun, and P.W. Kao, Deformation Induced Grain Boundaries in Commercially Pure Aluminium, Acta Mater., 2000, 48, p 3377-3385CrossRefGoogle Scholar
  157. 157.
    C. Lee and J. Kim, Microstructure of Kinetic Spray Coatings: A Review, J. Therm. Spray Technol., 2015, 24, p 592-610CrossRefGoogle Scholar
  158. 158.
    P.C. King, S.H. Zahiri, and M. Jahedi, Focused ion Beam Micro-Dissection of Cold-Sprayed Particles, Acta Mater., 2008, 56, p 5617–5626CrossRefGoogle Scholar
  159. 159.
    X. Luo and C. Li, Thermal Stability of Microstructure and Hardness of Cold-Sprayed cBN/NiCrAl Nanocomposite Coating, J. Therm. Spray Technol., 2012, 21, p 578-585CrossRefGoogle Scholar
  160. 160.
    M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339-2344CrossRefGoogle Scholar
  161. 161.
    M.R. Rokni, A. Zarei-Hanzaki, and H.R. Abedi, Microstructure Evolution and Mechanical Properties of Back Extruded 7075 Aluminum Alloy at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 532, p 593-600CrossRefGoogle Scholar
  162. 162.
    W. Blum, Q. Zhu, R. Merkel, and H.J. McQueen, Geometric Dynamic Recrystallization in Hot Torsion of Al-5 Mg-0.6 Mn (AA5083), Mater. Sci. Eng. A, 1996, 205, p 23-30CrossRefGoogle Scholar
  163. 163.
    M.E. Kassner and S.R. Barrabes, New Developments in Geometric Dynamic Recrystallization, Mater. Sci. Eng. A, 2005, 410, p 152-155CrossRefGoogle Scholar
  164. 164.
    X.T. Luo, C.X. Li, F.L. Shang, G.J. Yang, Y.Y. Wang, and C.J. Li, High Velocity Impact Induced Microstructure Evolution During Deposition of Cold Spray Coatings: A Review, Surf. Coat. Technol., 2014, 254, p 11-20CrossRefGoogle Scholar
  165. 165.
    N. Hansen, X. Huang, M. Moller, and A. Godfrey, Thermal Stability of Aluminum Cold Rolled to Large Strain, J. Mater. Sci., 2008, 43, p 6254-6259CrossRefGoogle Scholar
  166. 166.
    R.A. Vandermeer and N. Hansen, Recovery Kinetics of Nanostructured Aluminum: Model and Experiment, Acta Mater., 2008, 56, p 5719-5727CrossRefGoogle Scholar
  167. 167.
    H.J. McQueen, Elevated-Temperature Deformation at Forming Rates of 10−2 to 102 s−1, Metall. Mater. Trans. A, 2002, 33, p 345-362CrossRefGoogle Scholar
  168. 168.
    H. Hu, Recrystallization of Metals, Gordon, New York, 1963Google Scholar
  169. 169.
    T. Hasegawa, T. Yakou, and U.F. Kocks, Length Changes and Stress Effects During Recovery of Deformed Aluminum, Acta Metall., 1982, 30, p 235-243CrossRefGoogle Scholar
  170. 170.
    L. Ajdelsztajn, B. Jodoin, and J.M. Schoenung, Synthesis and Mechanical Properties of Nanocrystalline Ni Coatings Produced by Cold Gas Dynamic Spraying, Surf. Coat. Technol., 2006, 201, p 1166-1172CrossRefGoogle Scholar
  171. 171.
    Y. Xiong, X. Xiong, S. Yoon, G. Bae, and C. Lee, Dependence of Bonding Mechanisms of Cold Sprayed Coatings on Strain-Rate-Induced Non-equilibrium Phase Transformation, J. Therm. Spray Technol., 2011, 20, p 860-865CrossRefGoogle Scholar
  172. 172.
    Q. Wang, D. Qiu, Y. Xiong, N. Birbilis, and M. Zhang, High Resolution Microstructure Characterization of the Interface Between Cold Sprayed Al coating and Mg Alloy Substrate, Appl. Surf. Sci., 2014, 289, p 366-369CrossRefGoogle Scholar
  173. 173.
    K.H. Ko, J.O. Choi, and H. Lee, Pretreatment Effect of Cu Feedstock on Cold-Sprayed Coatings, J. Mater. Process. Technol., 2014, 214, p 1530-1535CrossRefGoogle Scholar
  174. 174.
    K. Ko, J.O. Choi, H. Lee, Y. Seo, S. Jung, and S. Yu, Cold Spray Induced Amorphization at the Interface Between Fe Coatings and Al Substrate, Mater. Lett., 2015, 149, p 40-42CrossRefGoogle Scholar
  175. 175.
    S. Yoon, G. Bae, Y. Xiong, S. Kumar, K. Kang, J. Kim, and C. Lee, Strain-Enhanced Nanocrystallization of a CuNiTiZr Bulk Metallic Glass Coating by a Kinetic Spraying Process, Acta Mater., 2009, 57, p 6191-6199CrossRefGoogle Scholar
  176. 176.
    S.H. Zahiri, D. Fraser, and M. Jahedi, Recrystallization of Cold Spray-Fabricated CP Titanium Structures, J. Therm. Spray Technol., 2009, 18, p 16-22CrossRefGoogle Scholar
  177. 177.
    R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia, Deformation and Activation Volumes of Cryomilled Ultrafine-Grained Aluminum, Acta Mater., 2004, 52, p 4259-4271CrossRefGoogle Scholar
  178. 178.
    A.E. Romanov, Continuum Theory of Defects in Nanoscaled Materials, Nano Struct. Mater., 1995, 6, p 125-134CrossRefGoogle Scholar
  179. 179.
    J. Eckert, Relationships Governing the Grain Size of Nanocrystalline Metals and Alloys, Nano Struct. Mater., 1995, 6, p 413-416CrossRefGoogle Scholar
  180. 180.
    M.R. Rokni, C.A. Widener, V.K. Champagne, G.A. Crawford, and S.R. Nutt, The Effects of Heat Treatment on 7075 Al Cold Spray Deposits, Surf. Coat. Technol., 2017, 310, p 278-285CrossRefGoogle Scholar
  181. 181.
    M.R. Rokni, C.A. Widener, O.C. Ozdemir, and G.A. Crawford, Microstructure and Mechanical Properties of Cold Sprayed 6061 Al in As-Sprayed and Heat Treated Condition, Surf. Coat. Technol., 2017, 309, p 641-650CrossRefGoogle Scholar
  182. 182.
    D.H. Shin, B.C. Kim, K.T. Park, and W.Y. Choo, Microstructural Changes in Equal Channel Angular Pressed Low Carbon Steel by Static Annealing, Acta Mater., 2000, 48, p 3245-3252CrossRefGoogle Scholar
  183. 183.
    R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7, p 206-212CrossRefGoogle Scholar
  184. 184.
    R. Lupoi and W. O’Neill, Deposition of Metallic Coatings on Polymer Surfaces Using Cold Spray, Surf. Coat. Technol., 2010, 205, p 2167-2173CrossRefGoogle Scholar
  185. 185.
    T. Novoselova, S. Celotto, R. Morgan, P. Fox, and W. O’Neill, Formation of TiAl Intermetallics by Heat Treatment of Cold-Sprayed Precursor Deposits, J. Alloys Compd., 2007, 436, p 69-77CrossRefGoogle Scholar
  186. 186.
    Z.B. Zhao, B.A. Gillispie, and J.R. Smith, Coating Deposition by the Kinetic Spray Process, Surf. Coat. Technol., 2006, 200, p 4746-4754CrossRefGoogle Scholar
  187. 187.
    H.T. Wang, C.J. Li, G.J. Yang, C.X. Li, Q. Zhang, and W.Y. Li, Microstructural Characterization of Cold-Sprayed Nanostructured FeAl Intermetallic Compound Coating and Its Ball-Milled Feedstock Powders, J. Therm. Spray Technol., 2007, 16, p 669-676CrossRefGoogle Scholar
  188. 188.
    Q. Zhang, C.J. Li, X.R. Wang, Z.L. Ren, C.X. Li, and G.J. Yang, Formation of NiAl Intermetallic Compound by Cold Spraying of Ball-Milled Ni/Al Alloy Powder Through Post-annealing Treatment, J. Therm. Spray Technol., 2008, 17, p 715-720CrossRefGoogle Scholar
  189. 189.
    H. Bu, M. Yandouzi, C. Lu, and B. Jodoin, Effect of Heat Treatment on the Intermetallic Layer of Cold Sprayed Aluminum Coatings on Magnesium Alloy, Surf. Coat. Technol., 2011, 205, p 4665-4671CrossRefGoogle Scholar
  190. 190.
    K. Spencer and M.X. Zhang, Heat Treatment of Cold Spray Coatings to Form Protective Intermetallic Layers, Scr. Mater., 2009, 61, p 44-47CrossRefGoogle Scholar
  191. 191.
    Q. Wang, N. Birbilis, and M.X. Zhang, Interfacial Structure Between Particles in an Aluminum Deposit Produced by Cold Spray, Mater. Letters, 2011, 65, p 1576-1578CrossRefGoogle Scholar
  192. 192.
    Q. Wang, N. Birbilis, and M.X. Zhang, On the Formation of a Diffusion Bond from Cold-Spray Coatings, Metal. Mater. Trans. A, 2012, 43, p 1395-1399CrossRefGoogle Scholar
  193. 193.
    H. Lee, S. Jung, S. Lee, and K. Ko, Fabrication of Cold Sprayed Al-Intermetallic Compounds Coatings by Post Annealing, Mater. Sci. Eng. A, 2006, 433, p 139-143CrossRefGoogle Scholar
  194. 194.
    V.K. Champagne and D.J. Helfritch, Mainstreaming Cold Spray-Push for Applications, Surf. Eng., 2014, 30, p 396-403CrossRefGoogle Scholar
  195. 195.
    R. Jones, N. Matthews, and C.A. Rodopoulos, On the Use of Supersonic Particle Deposition to Restore the Structural Integrity of Damaged Aircraft Structures, Int. J. Fatigue, 2011, 33, p 1257-1267CrossRefGoogle Scholar
  196. 196.
    D. Goldbaum, R.R. Chromik, S. Yue, E. Irissou, and J.G. Legoux, Mechanical Property Mapping of Cold Sprayed Ti Splats and Coatings, J. Therm. Spray Technol., 2011, 20, p 486-496CrossRefGoogle Scholar
  197. 197.
    Q. Wang, N. Birbilis, H. Huang, and M.X. Zhang, Microstructure Characterization and Nanomechanics of Cold-Sprayed Pure Al and Al-Al2O3 Composite Coatings, Surf. Coat. Technol., 2013, 232, p 216-223CrossRefGoogle Scholar
  198. 198.
    G. Rolland, P. Sallamand, V. Guipont, M. Jeandin, E. Boller, and C. Bourda, Damage Study of Cold-Sprayed Composite Materials for Application to Electrical Contacts, J. Therm. Spray Technol., 2012, 21, p 758-772CrossRefGoogle Scholar
  199. 199.
    L. Ajdelsztajn, B. Jodoin, G.E. Kim, and J.M. Schoenung, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metal. Mater. Trans. A, 2005, 6, p 657-666CrossRefGoogle Scholar
  200. 200.
    J. Liu, H. Cui, X. Zhou, X. Wu, and J. Zhang, Nanocrystalline Copper Coatings Produced by Cold Spraying, Met. Mater. Int., 2012, 18, p 121-128CrossRefGoogle Scholar
  201. 201.
    J. Ajaja, D. Goldbaum, and R.R. Chromik, Characterization of Ti Cold Spray Coatings by Indentation Methods, Acta Astronaut., 2011, 69, p 923-928CrossRefGoogle Scholar
  202. 202.
    Y. Chen, S.R. Bakshi, and A. Agarwal, Correlation Between Nanoindentation and Nanoscratch Properties of Carbon Nanotube Reinforced Aluminum Composite Coatings, Surf. Coat. Technol., 2010, 204, p 2709-2715CrossRefGoogle Scholar
  203. 203.
    S.R. Bakshi, V. Singh, K. Balani, D.G. McCartney, S. Seal, and A. Agarwal, Carbon Nanotube Reinforced Aluminum Composite Coating via Cold Spraying, Surf. Coat. Technol., 2008, 202, p 5162-5169CrossRefGoogle Scholar
  204. 204.
    D.J. Woo, B. Sneed, F. Peerally, F.C. Heer, L.N. Brewer, J.P. Hooper, and S. Osswald, Synthesis of Nanodiamond-Reinforced Aluminum Metal Composite Powders and Coatings Using High-Energy Ball Milling and Cold Spray, Carbon, 2013, 63, p 404-415CrossRefGoogle Scholar
  205. 205.
    W.A. Soer, K.E. Aifantis, and J.T.M. De Hosson, Incipient Plasticity During Nanoindentation at Grain Boundaries in Body-Centered Cubic Metals, Acta Mater., 2005, 53, p 4665-4676CrossRefGoogle Scholar
  206. 206.
    W.Y. Li, C.J. Li, and H.L. Liao, Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu Coating, J. Therm. Spray Technol., 2006, 15, p 206-211CrossRefGoogle Scholar
  207. 207.
    T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154, p 237-252CrossRefGoogle Scholar
  208. 208.
    A. Gerlich, G. Avramovic-Cingara, and T.H. North, Stir Zone Microstructure and Strain Rate During Al 7075-T6 Friction Stir Spot Welding, Metall. Mater. Trans. A, 2006, 37, p 2773-2786CrossRefGoogle Scholar
  209. 209.
    X.T. Luo, Y.K. Wei, Y. Wang, and C.J. Li, Microstructure and Mechanical Property of Ti and Ti6Al4V Prepared by an In-Situ Shot Peening Assisted Cold Spraying, Mater. Des., 2015, 85, p 527-533CrossRefGoogle Scholar
  210. 210.
    O. Meydanoglu, J. Bertrand, and E. Sabri, Kayali, Microstructure, Mechanical Properties and Corrosion Performance of 7075 Al Matrix Ceramic Particle Reinforced Composite Coatings Produced by the Cold Gas Dynamic Spraying Process, Surf. Coat. Technol., 2013, 235, p 108-116CrossRefGoogle Scholar
  211. 211.
    M. Yandouzi, L. Ajdelsztajn, and B. Jodoin, WC-Based Composite Coatings Prepared by the Pulsed Gas Dynamic Spraying Process: Effect of the Feedstock Powders, Surf. Coat. Technol., 2008, 202, p 3866-3877CrossRefGoogle Scholar
  212. 212.
    S.H. Zahiri, C.L. Antonio, and M. Jahedi, Elimination of Porosity in Directly Fabricated Titanium via Cold Gas Dynamic Spraying, Mater. Process. Technol., 2009, 209, p 922-929CrossRefGoogle Scholar
  213. 213.
    N. Cinca, M. Barbosa, S. Dosta, and J.M. Guilemany, Study of Ti Deposition onto Al Alloy by Cold Gas Spraying, Surf. Coat. Technol., 2010, 205, p 1096-1102CrossRefGoogle Scholar
  214. 214.
    R. Huang and R. Fukanuma, Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits, J. Therm. Spray Technol., 2012, 21, p 541-549CrossRefGoogle Scholar
  215. 215.
    P. Cavaliere, A. Perrone, and A. Silvello, Processing Conditions Affecting Grain Size and Mechanical Properties in Nanocomposites Produced via Cold Spray, J. Therm. Spray Technol., 2014, 23, p 1089-1096CrossRefGoogle Scholar
  216. 216.
    V.K. Champagne, Jr., D. Helfritch, P. Leyman, S. Grendahl, and B. Klotz, Interface Material Mixing Formed by the Deposition of Copper on Aluminum by Means of the Cold Spray Process, J. Therm. Spray Technol., 2005, 14, p 330-334CrossRefGoogle Scholar
  217. 217.
    R. Huang, W. Ma, and H. Fukanuma, Development of Ultra-Strong Adhesive Strength Coatings Using Cold Spray, Surf. Coat. Technol., 2014, 258, p 832-841CrossRefGoogle Scholar
  218. 218.
    D.M. Chun, J.O. Choi, C. Sunyong Lee, and S.H. Ahn, Effect of Stand-Off Distance for Cold Gas Spraying of Fine Ceramic Particles (<5 μm) Under Low Vacuum and Room Temperature Using Nano-Particle Deposition System (NPDS), Surf. Coat. Technol., 2012, 206, p 2125-2132CrossRefGoogle Scholar
  219. 219.
    C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissley, and T.J. Eden, Effect of Substrate Surface Roughening and Cold Spray Coating on the Fatigue Life of AA2024 Specimens, Mater. Des., 2014, 54, p 212-221CrossRefGoogle Scholar
  220. 220.
    V.K. Champagne, The Repair of Magnesium Rotorcraft Components by Cold Spray, J. Fail. Anal. Preven., 2008, 8, p 164-175CrossRefGoogle Scholar
  221. 221.
    F. Gartner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, and M. Kocak, Mechanical Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200, p 6770-6782CrossRefGoogle Scholar
  222. 222.
    T.S. Price, P.H. Shipway, D.G. McCartney, E. Calla, and D. Zhang, A Method for Characterizing the Degree of Inter-Particle Bond Formation in Cold Sprayed Coatings, J. Therm. Spray Technol., 2007, 16, p 566-570CrossRefGoogle Scholar
  223. 223.
    X.J. Ning, J.H. Jang, H.J. Kim, C.J. Li, and C. Lee, Cold Spraying of Al-Sn Binary Alloy: Coating Characteristics and Particle Bonding Features, Surf. Coat. Technol., 2008, 202, p 1681-1687CrossRefGoogle Scholar
  224. 224.
    D.E. Wolfe, T.J. Eden, J.K. Potter, and A.P. Jaroh, Investigation and Characterization of Cr3C2-Based Wear-Resistant Coatings Applied by the Cold Spray Process, J. Therm. Spray Technol., 2006, 15, p 400-412CrossRefGoogle Scholar
  225. 225.
    M.M. Sharma, T.J. Eden, and B.T. Golesich, Effect of Surface Preparation on the Microstructure, Adhesion, and Tensile Properties of Cold-Sprayed Aluminum Coatings on AA2024 Substrates, J. Therm. Spray Technol., 2015, 24, p 410-422CrossRefGoogle Scholar
  226. 226.
    S. Kumar, A. Jyothirmayi, N. Wasekar, and S.V. Joshi, Influence of Annealing on Mechanical and Electrochemical Properties of Cold Sprayed Niobium Coatings, Surf. Coat. Technol., 2016, 296, p 124-135CrossRefGoogle Scholar
  227. 227.
    S. Kumar, V. Vidyasagar, A. Jyothirmayi, and S.V. Joshi, Effect of Heat Treatment on Mechanical Properties and Corrosion Performance of Cold-Sprayed Tantalum Coatings, J. Therm. Spray Technol., 2016, 25, p 745-756CrossRefGoogle Scholar
  228. 228.
    A.C. Hall, D.J. Cook, R.A. Neiser, T.J. Roemer, and D.A. Hirschfeld, The Effect of a Simple Annealing Heat Treatment on the Mechanical Properties of Cold-Sprayed Aluminum, J. Therm. Spray Technol., 2006, 15, p 233-238CrossRefGoogle Scholar
  229. 229.
    B.S. DeForce, T.J. Eden, and J.K. Potter, Cold Spray Al-5% Mg Coatings for the Corrosion Protection of Magnesium Alloys, J. Therm. Spray Technol., 2011, 20, p 1352-1358CrossRefGoogle Scholar
  230. 230.
    P. Coddet, C. Verdy, C. Coddet, F. Debray, and F. Lecouturier, Mechanical Properties of Thick 304L Stainless Steel Deposits Processed by He Cold Spray, Surf. Coat. Technol., 2015, 277, p 74-80CrossRefGoogle Scholar
  231. 231.
    P. Coddet, C. Verdy, C. Coddet, and F. Debray, On the Mechanical and Electrical Properties of Copper-Silver and Copper-Silver-Zirconium Alloys Deposits Manufactured by Cold Spray, Mater. Sci. Eng. A, 2016, 662, p 72-79CrossRefGoogle Scholar
  232. 232.
    P. Vo, E. Irissou, J.-G. Legoux, and S. Yue, Mechanical and Microstructural Characterization of Cold-Sprayed Ti-6Al-4V After Heat Treatment, J. Therm. Spray Technol., 2013, 22, p 954-964CrossRefGoogle Scholar
  233. 233.
    M. Karimi, B. Jodoin, and G. Rankin, Shock-Wave-Induced Spraying: Modeling and Physics of a New Spray Process, J. Therm. Spray Technol., 2011, 20, p 866-881CrossRefGoogle Scholar
  234. 234.
    T. Schmidt, F. Gartner, H. Kreye, and T. Klassen, Thermal Spray 2008, Thermal Spray Crossing Borders, E. Lugscheider (Ed.) June 2-4 (Maastricht, The Netherlands) DVS, p 724-731Google Scholar
  235. 235.
    H. Koivuluoto, A. Coleman, K. Murray, M. Kearns, and P. Vuoristo, High Pressure Cold Sprayed (HPCS) and Low Pressure Cold Sprayed (LPCS) Coatings Prepared from OFHC Cu Feedstock: Overview from Powder Characteristics to Coating Properties, J. Therm. Spray Technol., 2012, 21, p 1065-1075CrossRefGoogle Scholar
  236. 236.
    P. Coddet, C. Verdy, C. Coddet, F. Lecoutrier, and F. Debray, Comparison of the Properties of Cold-Sprayed Cu-0.5 Cr-0.05 Zr Alloys After Various Heat Treatments Versus Forged and Vacuum Plasma-Sprayed Alloys, J. Therm. Spray Technol., 2014, 23, p 486-491CrossRefGoogle Scholar
  237. 237.
    N.M. Chavan, M. Ramakrishna, P. Sudharshan Phani, D. Srinivasa Rao, and G. Sundararajan, The Influence of Process Parameters and Heat Treatment on the Properties of Cold Sprayed Silver Coatings, Surf. Coat. Technol., 2011, 205, p 4798-4807CrossRefGoogle Scholar
  238. 238.
    L. Venkatesh, N.M. Chavan, and G. Sundararajan, The Influence of Powder Particle Velocity and Microstructure on the Properties of Cold Sprayed Copper Coatings, J. Therm. Spray. Technol., 2011, 20, p 1009-1021CrossRefGoogle Scholar
  239. 239.
    Y. Watanabe, Y. Ichikawa, I. Nonaka, H. Miura, Micro-Texture and Physical Properties of the Cold-sprayed Copper Deposit, in: Proceedings of the 14th International Conference on Electronic Materials and Packaging (EMAP), Landau, Island, 2012, p 1-4Google Scholar
  240. 240.
    T. Schmidt, F. Gaertner, H. Kreye, New Developments in Cold Spray Based on Higher Gas- and Particle Temperatures, in: Proceedings ITSC, ASM International, 2006, p 488-494Google Scholar
  241. 241.
    M. Lee, H.J. Choi, J.Y. Lee, J.W. Choi, The Manufacturing of a Disposal Canister Using a Cold Spray Coating of Copper, IHLRWMC, 2013, p 284-290Google Scholar
  242. 242.
    K. Spencer, V. Luzin, N. Matthews, and M.-X. Zhang, Residual Stresses in Cold Spray Al Coatings: The Effect of Alloying and of Process Parameters, Surf. Coat. Technol., 2012, 206, p 4249-4255CrossRefGoogle Scholar
  243. 243.
    T. Suhonen, T. Varis, S. Dosta, M. Torrell, and J.M. Guilemany, Residual Stress Development in Cold Sprayed Al, Cu and Ti Coatings, Acta Mater., 2013, 61, p 6329-6337CrossRefGoogle Scholar
  244. 244.
    V. Luzin, K. Spencer, and M.X. Zhang, Residual Stress and Thermo-Mechanical Properties of Cold Spray Metal Coatings, Acta Mater., 2011, 59, p 1259-1270CrossRefGoogle Scholar
  245. 245.
    R. Ghelichi, S. Bagherifard, D. MacDonald, I. Fernandez-Pariente, B. Jodoin, and M. Guagliano, Experimental and Numerical Study of Residual Stress Evolution in Cold Spray Coating, Appl. Surf. Sci., 2014, 288, p 26-33CrossRefGoogle Scholar
  246. 246.
    W.Y. Li and W. Gao, Some Aspects on 3D Numerical Modeling of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, Appl. Surf. Sci., 2009, 255, p 7878-7892CrossRefGoogle Scholar
  247. 247.
    E. Sansoucy, G.E. Kim, A.L. Moran, and B. Jodoin, Mechanical Characteristics of Al-Co-Ce Coatings Produced by the Cold Spray Process, J. Therm. Spray. Technol., 2007, 16, p 651-660CrossRefGoogle Scholar
  248. 248.
    N. Bala, H. Singh, J. Karthikeyan, and S. Prakash, Cold Spray Coating Process for Corrosion Protection: A Review, Surf. Eng., 2014, 30, p 414-421CrossRefGoogle Scholar
  249. 249.
    H. Koivuluoto and P. Vuoristo, Structure and Corrosion Properties of Cold Sprayed Coatings: A Review, Surf. Eng., 2014, 30, p 404-413CrossRefGoogle Scholar
  250. 250.
    K. Balani, T. Laha, A. Agarwal, J. Karthikeyan, and N. Munroe, Effect of Carrier Gases on Microstructural and Electrochemical Behavior of Cold-Sprayed 1100 Aluminum Coating, Surf. Coat. Technol., 2005, 195, p 272-279CrossRefGoogle Scholar
  251. 251.
    R. Maev and V. Maeva, Air Gas Dynamic Spraying of Powder Mixtures: Theory and Application, J. Therm. Spray Technol., 2006, 15, p 198-205CrossRefGoogle Scholar
  252. 252.
    B. Djordjevic and R. Maev, SIMATTM application for aerospace corrosion protection and structural repair. eds. B. Marple, M. Hyland, Y.-C. Lau, R. Lima, J. Voyer, 2006, Seattle, ASM InternationalGoogle Scholar
  253. 253.
    J. Karthikeyan, T. Laha, A. Agarwal, and N. Munroe, Microstructural and Electrochemical Characterization of Cold-Sprayed 1100 Aluminum Coating, ASM International, Osaka, 2004Google Scholar
  254. 254.
    R. Blose, D. Vasquez, and W. Kratochvil, Metal Passivation to Resist Corrosion Using the Cold Spray Process, Thermal Spray, Explore Its Surfacing Potential, ASM International, Basel, 2005Google Scholar
  255. 255.
    T. Xiong, Y. Tao, C. Sun, H. Jin, H. Du, and T. Li, Study on Corrosion Behavior of Cold Sprayed Al/α-Al2O3 Deposit on AZ91D Alloy, eds. B. Marple, M. Hyland, Y.-C. Lau, C.-J. Li, R. Lima, and G. Montavon, 2009, Las Vegas, ASM InternationalGoogle Scholar
  256. 256.
    J. Villafuerte, D. Dzhurinskiy, R. Ramirez, E. Maeva, V. Leshchynsky, and R. Maev, Corrosion Behavior and Microstructure of the Al-Al2O3 Coatings Produced by Low Pressure Cold Spraying, eds. B. Marple, M. Hyland, Y.-C. Lau, C.-J. Li, R. Lima, G. Montavon, 2009, Las Vegas, ASM InternationalGoogle Scholar
  257. 257.
    W. Kroemmer and P. Heinrich, Cold Spraying-Potential and New Application Ideas, eds. B. Marple, M. Hyland, Y.C. Lau, R. Lima, J. Voyer, 2006, Seattle, ASM InternationalGoogle Scholar
  258. 258.
    D. Dzhurinskiy, E. Maeva, E. Leshchinsky, and R. Maev, Corrosion Protection of Light Alloys Using Low Pressure Cold Spray, J. Therm. Spray Technol., 2012, 21, p 304-313CrossRefGoogle Scholar
  259. 259.
    C. Ma, X. Liu, and C. Zhou, Cold-Sprayed Al Coating for Corrosion Protection of Sintered NdFeB, J. Therm. Spray Technol., 2014, 23, p 456-462CrossRefGoogle Scholar
  260. 260.
    H. Bu, M. Yandouzi, C. Lu, D. MacDonald, and B. Jodoin, Cold Spray Blended Al+Mg17Al12 Coating for Corrosion Protection of AZ91D Magnesium Alloy, Surf. Coat. Technol., 2012, 207, p 155-162CrossRefGoogle Scholar
  261. 261.
    K. Spencer, D.M. Fabijanic, and M.X. Zhang, The Use of Al-Al2O3 Cold Spray Coatings to Improve the Surface Properties of Magnesium Alloys, Surf. Coat. Technol., 2009, 204, p 336-344CrossRefGoogle Scholar
  262. 262.
    D. Lahiri, P.K. Gill, S. Scudino, C. Zhang, V. Singh, J. Karthikeyan, N. Munroe, S. Seal, and A. Agarwal, Cold Sprayed Aluminum Based Glassy Coating: Synthesis, Wear and Corrosion Properties, Surf. Coat. Technol., 2013, 232, p 33-40CrossRefGoogle Scholar
  263. 263.
    H. Koivuluoto and P. Vuoristo, Structural Analysis of Cold-Sprayed Nickel-Based Metallic and Metallic-Ceramic Coatings, J. Therm. Spray Technol., 2010, 19, p 975-989CrossRefGoogle Scholar
  264. 264.
    H. Koivuluoto, M. Honkanen, and P. Vuoristo, Cold-Sprayed Copper and Tantalum Coatings—Detailed FESEM and TEM Analysis, Surf. Coat. Technol., 2010, 204, p 2353-2361CrossRefGoogle Scholar
  265. 265.
    D.E. Talbot, and J.D. Talbot, Corrosion Science and Technology, CRC Press, 2007Google Scholar
  266. 266.
    B. Taljat, T. Zacharia, and F. Kosel, New Analytical Procedure to Determine Stress-Strain Curve from Spherical Indentation Data, Int. J. Solid. Struc., 1998, 1998(35), p 4411-4426CrossRefGoogle Scholar
  267. 267.
    S. Marx, A. Paul, A. Köhler, and G. Hüttl, Cold Spraying-Innovative Layers for New Applications, ed. E. Lugscheider, 2005, Basel, ASM InternationalGoogle Scholar
  268. 268.
    H. Hoell and P. Richter, KINETIKS® 4000—New Perspective with Cold Spraying, ed. E. Lugscheider, 2008, Maastricht, DVSGoogle Scholar
  269. 269.
    N. Bala, H. Singh, and S. Murray, Accelerated Hot Corrosion Studies of Cold Spray Ni- 50Cr Coating on Boiler Steels, Mater. Des., 2010, 31, p 244-253CrossRefGoogle Scholar
  270. 270.
    S.M. Hassani-Gangaraj, A. Moridi, and M. Guagliano, Critical Review of Corrosion Protection by Cold Spray Coatings, Surf. Eng., 2015, 31, p 803-815CrossRefGoogle Scholar
  271. 271.
    H. Koivuluoto, G. Bolelli, L. Lusvarghi, F. Casadei, and P. Vuoristo, Corrosion Resistance of Cold-Sprayed Ta Coatings in Very Aggressive Conditions, Surf. Coat. Technol., 2010, 205, p 1103-1107CrossRefGoogle Scholar
  272. 272.
    H.R. Wang, B.R. Hou, J. Wang, and W.-Y. Li, Effect of Process Conditions on Microstructure and Corrosion Resistance of Cold-Sprayed Ti Coatings, J. Therm. Spray Technol., 2008, 17, p 736-741CrossRefGoogle Scholar
  273. 273.
    X. Zhou and P. Mohanty, Electrochemical Behavior of Cold Sprayed Hydroxyapatite/Titanium Composite in Hanks Solution, Electrochim. Acta, 2012, 65, p 134-140CrossRefGoogle Scholar
  274. 274.
    S. Dosta, M. Couto, and J.M. Guilemany, Cold Spray Deposition of a WC-25Co Cermet onto Al7075-T6 and Carbon Steel Substrates, Acta Mater., 2013, 61, p 643-652CrossRefGoogle Scholar
  275. 275.
    S. Semiatin, Recovery, Recrystallization and Grain Growth Structures, Metalworking: Bulk Forming, 14A, ASM International, ASM handbook, Basel, 2005, p 552-562Google Scholar
  276. 276.
    X. Meng, J. Zhang, W. Han, J. Zhao, and Y. Liang, Influence of Annealing Treatment on the Microstructure and Mechanical Performance of Cold Sprayed 304 Stainless Steel Coating, Appl. Surf. Sci., 2011, 258, p 700-704CrossRefGoogle Scholar
  277. 277.
    Z. Li, X. Yang, J. Zhang, B. Zheng, Y. Zhou, A. Shan, and E. Lavernia, Microstructure Evolution and Mechanical Behavior of Cold-Sprayed, Bulk Nanostructured Titanium, Metall. Mater. Trans. A, 2014, 45, p 5017-5028CrossRefGoogle Scholar
  278. 278.
    T. Hussain, D.G. McCartney, and P.H. Shipway, Bonding Between Aluminium and Copper in Cold Spraying: Story of Asymmetry, Mater. Sci. Technol., 2012, 28, p 1371-1378CrossRefGoogle Scholar
  279. 279.
    R. Huang, M. Sone, W. Ma, and H. Fukanuma, The Effects of Heat Treatment on the Mechanical Properties of Cold-Sprayed Coatings, Surf. Coat. Technol., 2015, 261, p 278-288CrossRefGoogle Scholar
  280. 280.
    W.Y. Li, X.P. Guo, C. Verdy, L. Dembinski, H.L. Liao, and C. Coddet, Improvement of Microstructure and Property of Cold-Sprayed Cu-4at.% Cr-2at.% Nb Alloy by Heat Treatment, Scr. Mater., 2006, 55, p 327-330CrossRefGoogle Scholar
  281. 281.
    E. Calla, D.G. McCartney, and P.H. Shipway, Effect of Deposition Conditions on the Properties and Annealing Behavior of Cold-Sprayed Copper, J. Thermal Spray Technol., 2006, 15, p 255-262CrossRefGoogle Scholar
  282. 282.
    D. Levasseur, S. Yue, and M. Brochu, Pressureless Sintering of Cold Sprayed Inconel 718 Deposit, Mater. Sci. Eng. A, 2012, 556, p 343-350CrossRefGoogle Scholar
  283. 283.
    W. Wong, E. Irissou, P. Vo, M. Sone, F. Bernier, J.G. Legoux, H. Fukanuma, and S. Yue, Cold Spray Forming of Inconel 718, J. Thermal Spray Technol., 2013, 22, p 413-421CrossRefGoogle Scholar
  284. 284.
    P.S. Phani, D.S. Rao, S.V. Joshi, and G. Sundararajan, Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings, J. Thermal Spray Technol., 2007, 16, p 425-434CrossRefGoogle Scholar
  285. 285.
    D. Seo, K. Ogawa, K. Sakaguchi, N. Miyamoto, and Y. Tsuzuki, Parameter Study Influencing Thermal Conductivity of Annealed Pure Copper Coatings Deposited by Selective Cold Spray Processes, Surf. Coat. Technol., 2012, 206, p 2316-2324CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • M. R. Rokni
    • 1
  • S. R. Nutt
    • 1
  • C. A. Widener
    • 2
  • V. K. Champagne
    • 3
  • R. H. Hrabe
    • 4
  1. 1.M.C. Gill Composites Center, Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Mechanical Engineering, Advanced Materials Processing CenterSouth Dakota School of Mines & Technology (SDSM&T)Rapid CityUSA
  3. 3.U.S. Army Research LaboratoryWeapons and Materials Research DirectorateAberdeenUSA
  4. 4.VRC Metal SystemsRapid CityUSA

Personalised recommendations