Skip to main content

Advertisement

Log in

Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness (K IC) of the annealed coating was only 1.04 MPa m0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205, p 938-942

    Article  Google Scholar 

  2. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater., 2004, 8, p 77-91

    Article  Google Scholar 

  3. X.Q. Cao, R. Vassen, and D. Stöver, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1-10

    Article  Google Scholar 

  4. H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, and D. Stöver, Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System, J. Am. Ceram. Soc., 2003, 86, p 1338-1344

    Article  Google Scholar 

  5. J.Y. Li, H. Dai, Q. Li, X.H. Zhong, and X.Q. Cao, Improvement of Fracture Toughness Lanthanum Zirconate, Cailiao Gongcheng, 2006, 5, 51-56, 62

  6. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Thermal Shock Behavior of 8YSZ and Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying, Ceram. Int., 2012, 38, p 3595-3606

    Article  Google Scholar 

  7. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stöver, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83, p 2023-2028

    Article  Google Scholar 

  8. X.Q. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating, J. Am. Ceram. Soc., 2001, 84, p 2086-2090

    Article  Google Scholar 

  9. J.Y. Li, H. Dai, X.H. Zhong, Y.F. Zhang, X.F. Ma, J. Meng, and X.Q. Cao, Lanthanum Zirconate Ceramic Toughened by BaTiO3 Secondary Phase, J. Alloys Compd., 2008, 452, p 406-409

    Article  Google Scholar 

  10. R. Vaßen, F. Traeger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1, p 351-361

    Article  Google Scholar 

  11. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E. Lara-Curzio, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97, p 2736-2744

    Article  Google Scholar 

  12. O. Fabrichnaya, S. Lakiza, Ch. Wang, M. Zinkevich, and F. Aldinger, Assessment of Thermodynamic Functions in the ZrO2-La2O3-Al2O3 System, J. Alloys Compd., 2008, 453, p 271-281

    Article  Google Scholar 

  13. O. Fabrichnaya, G. Savinykh, and G. Schreiber, Phase Relations in the ZrO2-La2O3-Y2O3-Al2O3 System: Experimental Studies and Phase Modeling, J. Eur. Ceram. Soc., 2013, 33, p 37-49

    Article  Google Scholar 

  14. P.K. Sahua, S.K. Behera, S.K. Pratihar, and S. Bhattacharyya, Low Temperature Synthesis of Microwave Dielectric LaAlO3 Nanoparticles: Effect of Chloride on Phase Evolution and Morphology, Ceram. Int., 2004, 30, p 1231-1235

    Article  Google Scholar 

  15. B.C. Chakoumakos, D.G. Schlom, M. Urbanik, and J. Luine, Thermal Expansion of LaAlO3 and (La, Sr)(Al, Ta)O3, Substrate Materials for Superconducting Thin-Film Device Applications, J. Appl. Phys., 1998, 83, p 1979-1982

    Article  Google Scholar 

  16. X.Q. Liu and X.M. Chen, Dielectric and Mechanical Characteristics of Lanthanum Aluminate Ceramics with Strontium Niobate Addition, J. Eur. Ceram. Soc., 2004, 24, p 1999-2004

    Article  Google Scholar 

  17. P.D. Tall, C. Coupeau, and J. Rabier, Indentation-Induced Twinning in LaAlO3 Single Crystals: An Atomic Force Microscopy Study, Scr. Mater., 2003, 49, p 903-908

    Article  Google Scholar 

  18. C. Mercer, J.R. Williams, D.R. Clarke, and A.G. Evans, On a Ferroelastic Mechanism Governing the Toughness of Metastable Tetragonal-Prime (t′) Yttria-Stabilized Zirconia, Proc. R. Soc. A, 2007, 463, p 1393-1408

    Article  Google Scholar 

  19. T.A. Schaedler, R.M. Leckie, S. Krämer, A.G. Evan, and C.G. Levi, Toughening of Nontransformable t′-YSZ by Addition of Titania, J. Am. Ceram. Soc., 2007, 90, p 3896-3901

    Google Scholar 

  20. C.H. Kim, J.W. Jang, S.Y. Cho, I.T. Kim, and K.S. Hong, Ferroelastic Twins in LaAlO3 Polycrystal, Phys. B, 1999, 262, p 438-443

    Article  Google Scholar 

  21. M. Schweda, T. Beck, M. Offermann, and L. Singheiser, Thermographic Analysis and Modelling of the Delamination Crack Growth in a Thermal Barrier Coating on Fecralloy, Surf. Coat. Technol., 2013, 217, p 124-128

    Article  Google Scholar 

  22. C.S. Ramachandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology, J. Therm. Spray Technol., 2011, 20, p 590-607

    Article  Google Scholar 

  23. S. Datta, D.K. Pratihar, and P.P. Bandyopadhyay, Modeling of Plasma Spray Coating Process Using Statistical Regression Analysis, Int. J. Adv. Manuf. Technol., 2013, 65, p 967-980

    Article  Google Scholar 

  24. X.Q. Cao, Y.F. Zhang, J.F. Zhang, X.H. Zhong, Y. Wang, H.M. Ma, Z.H. Xu, L.M. He, and F. Lu, Failure of the Plasma-Sprayed Coating of Lanthanum Hexaluminate, J. Eur. Ceram. Soc., 2008, 28, p 1979-1986

    Article  Google Scholar 

  25. C. Friedrich, R. Gadow, and T. Schirmer, Lanthanum Hexaaluminate—a New Material for Atmospheric Plasma Spraying of Advanced Thermal Barrier Coatings, J. Therm. Spray. Technol., 2001, 10, p 592-598

    Article  Google Scholar 

  26. L.L. Huang, H.M. Meng, and J. Tang, Crystallization Behavior Of Plasma-Sprayed Lanthanide Magnesium Hexaaluminate Coatings, Int. J. Miner. Metall. Mater., 2014, 21, p 1247-1253

    Article  Google Scholar 

  27. X.Q. Cao, R. Vassen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating, J. Am. Ceram. Soc., 2001, 84, p 2086-2090

    Article  Google Scholar 

  28. M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, and T.D. Xiao, Development and Implementation of Plasma Sprayed Nanostructured Ceramic Coatings, Surf. Coat. Technol., 2001, 146-147, p 48-54

    Article  Google Scholar 

  29. D. Goberman, Y.H. Sohn, L. Shaw, E. Jordan, and M. Gell, Microstructure Development of Al2O3-13 wt.% TiO2 Plasma Sprayed Coatings Derived from Nanocrystalline Powder, Acta Mater., 2002, 50, p 1141-1152

    Article  Google Scholar 

  30. H.B. Xiong, L.L. Zheng, L. Li, and A. Vaidya, Melting and Oxidation Behavior of In-Flight Particles in Plasma Spray Process, Int. J. Heat Mass Transf., 2005, 48, p 5121-5133

    Article  Google Scholar 

  31. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, New York, 2008

    Book  Google Scholar 

  32. R.E. Taylor, X. Wang, and X. Xu, Thermophysical Properties of thermal Barrier Coatings, Surf. Coat. Technol., 1999, 120-121, p 89-95

    Article  Google Scholar 

  33. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564-1583

    Article  Google Scholar 

  34. G. Di Girolamo, F. Marra, C. Blasi, E. Serra, and T. Valente, Microstructure, Mechanical Properties and Thermal Shock Resistance of Plasma Sprayed Nanostructured Zirconia Coatings, Ceram. Int., 2011, 37, p 2711-2717

    Article  Google Scholar 

  35. C.S. Ramachandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, On the Cyclic Hot Corrosion Behaviour of Atmospheric Plasma Sprayed Lanthanum Zirconate Based Coatings in Contact with a Mixture of Sodium Sulphate and Vanadate Salts: A Comparison with the Traditional YSZ Duplex and NiCrAlY Coated Samples, Vacuum, 2013, 97, p 81-95

    Article  Google Scholar 

Download references

Acknowledgments

Funding from CONACYT – CIMAV – Southern Office of Aerospace Research and Development (SOARD) for the project “Multiphase-Multifunctional Ceramic Coatings” is acknowledged. Research made use of the MRL Shared Experimental Facilities, supported by the MRSEC Program of the NSF under Award No. DMR 1121053; a member of the NSF-funded Materials Research Facilities Network. JMS recognizes partial support of the Av Humboldt foundation for the HERMES fellowship. This research has been carried out partially at CENAPROT and LIDTRA national laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Poblano-Salas.

Additional information

L. G. Trápaga-Martínez—On sabatical leave at CIATEQ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano-Mandujano, D., Poblano-Salas, C.A., Ruiz-Luna, H. et al. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings. J Therm Spray Tech 26, 1198–1206 (2017). https://doi.org/10.1007/s11666-017-0569-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0569-y

Keywords

Navigation