Skip to main content
Log in

Effect of Particle Size on the Micro-cracking of Plasma-Sprayed YSZ Coatings During Thermal Cycle Testing

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The failure of plasma-sprayed thermal barrier coatings (TBCs) during service or thermal cycle testing usually results from internal cracking in the top coat, erosion and CMAS (calcium-magnesium-alumina-silicate)-induced damage, etc. The microstructure of ceramic coatings affects their durability and other properties of TBCs. In the present study, yttria-stabilized zirconia (YSZ) coatings were deposited by atmospheric plasma spraying (APS) using feedstocks with different particle sizes. In addition, the effect of particle size on damage evolution in the top coat was investigated. It is found that the coatings deposited using coarse particles show the higher thermal cycle life. Crack length grew with increasing numbers of thermal cycles. The faster crack growth rate can be found for the coatings deposited from fine particles. The porosity of the coating made from the coarse powder is larger than the porosity of the coating made from fine powder both in the as-sprayed condition and after thermal cycling. The changes in crack growth rate and the porosity are related to the effect of sintering and stress evolution in coatings during the thermal cyclic tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  Google Scholar 

  2. U. Schulz, C. Leyens, K. Fritscher, M. Peters, B.S. Brings, O. Lavigne, J.M. Dorvaux, M. Poulain, R. Mévrel, and M. Caliez, Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7(1), p 73-80

    Article  Google Scholar 

  3. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8(1), p 77-91

    Article  Google Scholar 

  4. J.R. Nicholls, Advances in Coating Design for High-Performance Gas Turbines, MRS Bull., 2003, 28(09), p 659-670

    Article  Google Scholar 

  5. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33(1), p 383-417

    Article  Google Scholar 

  6. K.W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, 342(1), p 120-130

    Article  Google Scholar 

  7. Y. Li, C.J. Li, Q. Zhang, G.J. Yang, and C.X. Li, Influence of TGO Composition on the Thermal Shock Lifetime of Thermal Barrier Coatings with Cold-Sprayed MCrAlY Bond Coat, J. Therm. Spray Technol., 2010, 19(1), p 168-177

    Article  Google Scholar 

  8. Z. Wang, A. Kulkarni, S. Deshpande, T. Nakamura, and H. Herman, Effects of Pores and Interfaces on Effective Properties of Plasma Sprayed Zirconia Coatings, Acta Mater., 2003, 51(18), p 5319-5334

    Article  Google Scholar 

  9. H. Herman, Plasma-Sprayed Coating, Sci. Am., 1988, 259(3), p 112-117

    Article  Google Scholar 

  10. P. Bengtsson and T. Johannesson, Characterization of Microstructural Defects in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 1995, 4(3), p 175-180

    Article  Google Scholar 

  11. D. Zhu and R.A. Miller, Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings Under High Heat Flux Conditions, J. Therm. Spray Technol., 2000, 9(2), p 175-180

    Article  Google Scholar 

  12. Y. Tan, V. Srinivasan, T. Nakamura, S. Sampath, P. Bertrand, and G. Bertrand, Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies, J. Therm. Spray Technol., 2012, 21(5), p 950-962

    Article  Google Scholar 

  13. R. Sobhanverdi and A. Akbari, Porosity and Microstructural Features of Plasma Sprayed Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2015, 41(10), p 14517-14528

    Article  Google Scholar 

  14. Z.X. Yu, W.Z. Wang, and H.H. Wang, Effect of Dimensions of Non-bonded Lamellar Interfaces on the Stress Distribution in APS-TBCs, J. Therm. Spray Technol., 2014, 23(8), p 1436-1444

    Article  Google Scholar 

  15. H.B. Guo, H. Murakami, and S. Kuroda, Effect of Hollow Spherical Powder Size Distribution on Porosity and Segmentation Cracks in Thermal Barrier Coatings, J. Am. Ceram. Soc., 2006, 89(12), p 3797-3804

    Article  Google Scholar 

  16. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E.L. Curzio, Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging, J. Am. Ceram. Soc., 2014, 97(9), p 2736-2744

    Article  Google Scholar 

  17. L.B. Wang, W.Z. Wang, Y.F. Chen, and F.Z. Xuan, In-Situ Observation of the Cracking in Wollastonite Coatings and Effect of Powder Size on the Fracture, Trans. China Weld. Inst., 2014, 35, p 57-60 ((in Chinese))

    Google Scholar 

  18. S. Ahmadian and E.H. Jordan, Explanation of the Effect of Rapid Cycling on Oxidation, Rumpling, Microcracking, and Lifetime of Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2014, 244, p 109-116

    Article  Google Scholar 

  19. C.J. Li, Y. Li, G.J. Yang, and C.X. Li, Evolution of Lamellar Interface Cracks During Isothermal Cyclic Test of Plasma-Sprayed 8YSZ Coating with a Columnar-Structured YSZ Interlayer, J. Therm. Spray Technol., 2013, 22(8), p 1374-1382

    Article  Google Scholar 

  20. ASTM C1525-02, Standard Test Method for Determination of Thermal Shock Resistance for Advanced Ceramics by Water Quenching, Annual Book of ASTM Standards, ASTM International, PA, 2002

  21. Y. Liu, C. Persson, and S. Melin, Fracture Mechanics Analysis of Microcracks in Thermally Cycled Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 377-380

    Article  Google Scholar 

  22. L.L. Shaw, B. Barber, E.H. Jordan, and M. Gell, Measurements of the Interfacial Fracture Energy of Thermal Barrier Coatings, Scr. Mater., 1998, 39(10), p 1427-1434

    Article  Google Scholar 

  23. M. Karger, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thermal Barrier Coatings with High Segmentation Crack Densities: Spraying Process, Microstructure and Thermal Cycling Behavior, Surf. Coat. Technol., 2011, 206(1), p 16-23

    Article  Google Scholar 

  24. C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi, Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2009, 18(2), p 223-230

    Article  Google Scholar 

  25. T. Liu, X.T. Luo, X. Chen, and G.J. Yang, Morphology and Size Evolution of Interlamellar Two-Dimensional Pores in Plasma-Sprayed La2Zr2O7 Coatings During Thermal Exposure at 1300 °C, J. Therm. Spray Technol., 2015, 24(5), p 739-748

    Article  Google Scholar 

  26. M.R. Rad, G.H. Farrahi, M. Azadi, and M. Ghodrati, Stress Analysis of Thermal Barrier Coating System Subjected to Out-of-Phase Thermo-mechanical Loadings Considering Roughness and Porosity Effect, Surf. Coat. Technol., 2015, 262, p 77-86

    Article  Google Scholar 

  27. D.J. Kim, I.H. Shin, J.M. Koo, C.S. Seoka, and T.W. Leeb, Failure Mechanisms of Coin-Type Plasma-Sprayed Thermal Barrier Coatings with Thermal Fatigue, Surf. Coat. Technol., 2010, 205, p S451-S458

    Article  Google Scholar 

  28. S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control, and In Situ Measurement of Coating Properties: An Integrated Approach Toward Establishing Process-Property Correlations, J. Therm. Spray Technol., 2009, 18(2), p 243-255

    Article  Google Scholar 

  29. M. Gupta, N. Curry, P. Nylén, N. Markocsan, and R. Vaßen, Design of Next Generation Thermal Barrier Coatings-Experiments and Modelling, Surf. Coat. Technol., 2013, 220(15), p 20-26

    Article  Google Scholar 

  30. E. Bakan, D.E. Mack, G. Mauer, R. Mücke, and R. Vaßen, Porosity-Property Relationships of Plasma-Sprayed Gd2Zr2O7/YSZ Thermal Barrier Coatings, J. Therm. Spray Technol., 2015, 98(8), p 2647-2654

    Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the support of National Natural Science Foundation (No. 51275172), Science and Technology Commission of Shanghai Municipality Project (Nos. 14DZ2261205, 16DZ2260604), Aviation funding (2015ZES7001, 2013ZFS7001) and Shanghai Pujiang Program (15PJD009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weize Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wang, W., Yu, J. et al. Effect of Particle Size on the Micro-cracking of Plasma-Sprayed YSZ Coatings During Thermal Cycle Testing. J Therm Spray Tech 26, 755–763 (2017). https://doi.org/10.1007/s11666-017-0547-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0547-4

Keywords

Navigation