Skip to main content
Log in

New Approach of True Temperature Restoration in Optical Diagnostics Using IR-Camera

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The laser treatment processes are specified due to the laser-matter interaction instabilities. Modern additive manufacturing technologies such as selective laser melting provide layer-by-layer part growth with continuous operation for hours and days but without adequate controlling systems at present. In this paper, a method for determining a temperature in the laser action zone during the process based on a study of microscopic structure, phase and element analyses of the processed material is proposed. A fixed point corresponding to melting temperature was acquired, and the corresponding emissivity coefficient was calculated with the assumption of its wavelength and temperature independence. The experimental data were corroborated with good agreement with mathematical calculations. The obtained results reveal an impact of scanning speed and of laser emission power on temperature in molten zone, which presents interest for optimization of laser-processing technologies and more specifically selective laser melting process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Baumers, P. Dickens, C. Tuck, and R. Hague, The Cost of Additive Manufacturing: Machine Productivity, Economies of Scale and Technology-Push, Technol. Forecast. Soc., 2016, 102, p 193-201

    Article  Google Scholar 

  2. I. Yadroitsev, I. Yadroitsava, P. Bertrand, and I. Smurov, Factor Analysis of Selective Laser Melting Process Parameters and geometrical Characteristics Of Synthesized Single Tracks, Rapid Prototyping J., 2012, 18(3), p 201-208

    Article  Google Scholar 

  3. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Review of Selective Laser Melting: Materials and Applications, Appl. Phys. Rev, 2015, 2, p 041101. doi:10.1063/1.4935926

    Article  Google Scholar 

  4. A.V. Gusarov and I. Smurov, Modeling the Interaction of Laser Radiation with Powder Bed at Selective Laser Melting, Phys. Procedia, 2010, 5, p 381-394

    Article  Google Scholar 

  5. I. Smurov and M. Doubenskaia, Temperature Monitoring by Optical Methods in Laser Processing, Chapter 9 in the Book “Laser-Assisted Fabrication of Materials”. Springer Series in Materials Science, Vol 161, J. DuttaMajumdar and I. Manna, Ed., Springer, Berlin, 2013, p 373-422

    Google Scholar 

  6. A.A. Uglov, A.N. Yermolayev, and V.I. Zavidey, Optical Measurement of the Metal Surface Temperature Upon Exposure to the Pulsed Laser Radiation, Kvant. elektron., 1990, 17(4), p 519-522 (In Russian)

    Google Scholar 

  7. L.N. Latyyev, The Radiative Properties of Solid Materials, Handbook, A.E. Sheyndlin, M. Energiya, Ed., 1974 (in Russian).

  8. Handbook of Thermophysical Properties of Solid Materials. A. Goldsmith, T.E. Waterman, H.J. Hirschborn, Ed., Pergamon Press, 1962.

  9. F. Klocke, C. Wagner, and C. Ader, Development of an Integrated Model for Selective Laser Sintering, Proc. of the CIRP Int. Seminar on Manuf. Syst., H. Bley, Ed., June 03-05, 2003, Univ. des Saarlandes, Saarbrücken, 2003, p 387-392.

  10. T. Furumoto, M.R. Alkahari, T. Ueda, M.S.A. Aziz, and A. Hosokawa, Monitoring of Laser Consolidation Process of Metal Powder With High Speed Video Camera, Phys. Proced., 2012, 39, p 760-766

    Article  Google Scholar 

  11. O.B. Kovalev, A.V. Zaitsev, D. Novichenko, and I. Smurov, Theoretical and Experimental Investigation of Gas Flows, Powder Transport and Heating in Coaxial Laser Direct Metal Deposition (DMD) Process, J. Therm. Spray Technol., 2011, 20(3), p 465-478

    Article  Google Scholar 

  12. T. Purtonen, A. Kalliosaari, and A. Salminen, Monitoring and Adaptive Control of Laser Processes, Phys. Proced., 2014, 56, p 1218-1231

    Article  Google Scholar 

  13. U. Thombansen, A. Gatej, and M. Pereira, Tracking the Course of the Manufacturing Process in Selective Laser Melting, Proc. of SPIE, Int. Soc. Opt. and Photonics, 2014, pp 8963.

  14. S.N. Grigor’ev and T.V. Tarasova, Possibilities of the Technology of Additive Production for Making Complex-Shape Parts and Depositing Functional Coatings from Metallic Powders, Met. Sci. Heat Treat., 2016, 57(9-10), p 579-584

    Article  Google Scholar 

  15. L. Pawlowski, Thick Laser Coatings: A Review, J. Therm. Spray Technol., 1999, 8(2), p 279-295

    Article  Google Scholar 

  16. T. Furumoto, T. Ueda, M.R. Alkahar, and A. Hosokawa, Investigation of Laser Consolidation Process for Metal Powder by Two-Color Pyrometer and High-Speed Video Camera, CIRP Ann. Manuf. Technol., 2013, 62(1), p 223-226

    Article  Google Scholar 

  17. S. Liu, P. Farahmand, and R. Kovacevic, Optical Monitoring of High Power Direct Diode Laser Cladding, Opt. Laser Technol., 2014, 64, p 363-376

    Article  Google Scholar 

  18. M.A. Doubenskaia, I.V. Zhirnov, V.I. Teleshevskiy, P. Bertrand, and I.Y. Smurov, Determination of True Temperature in Selective Laser Melting of Metal Powder Using Infrared Camera, Mater. Sci. Forum., 2015, 834, p 93-102

    Article  Google Scholar 

  19. M. Doubenskaia, M. Pavlov, S. Grigoriev, and I. Smurov, Definition of Brightness Temperature and Restoration of True Temperature in Laser Cladding Using Infrared Camera, Surf. Coat. Technol., 2013, 220, p 244-247

    Article  Google Scholar 

  20. Y. Ding, J. Warton, and R. Kovacevic, Development of Sensing and Control System for Robotized Laser-Based Direct Metal Addition System, Addit. Manuf., 2016, 10, p 24-35

    Article  Google Scholar 

  21. I. Zhirnov, I. Yadroitsava, and I. Yadroitsev, Optical Monitoring and Numerical Simulation of Temperature Distribution at Selective Laser Melting of Ti6Al4V Alloy, Mater. Sci. Forum., 2015, 828, p 474-481

    Article  Google Scholar 

  22. T. Craeghs, S. Clijster, E. Yasa, F. Bechmann, S. Berumen, and J.P. Kruth, Determination of Geometrical Factors in Layerwise Laser Melting Using Optical Process Monitoring, Opt. Lasers Eng., 2011, 49(12), p 1440-1446

    Article  Google Scholar 

  23. V.I. Teleshevsky, I.V. Zhirnov, M.A. Doubenskaya, and S.G. Konov, Non-contact Measurement of Temperature on the Surface of the Material INOX 304 L in the Zone of Laser Irradiation, Vestnik MGTU STANKIN, 2013, 4(27), p 61-64 (In Russian)

    Google Scholar 

  24. I. Smurov, M. Doubenskaia, S. Grigoriev, and A. Nazarov, Optical Monitoring in Laser Cladding of Ti6Al4V, J. Therm. Spray Technol., 2012, 21(6), p 1357-1362

    Article  Google Scholar 

  25. F. Bayle and M. Doubenskaia, Selective Laser Melting Process Monitoring with High Speed Infra-Red Camera and Pyrometer, Proc. of SPIE, Fundamentals of Laser Assisted Micro-and Nanotechnologies, Vol. 6985, V.P. Veiko, Ed., 2008. doi: 10.1117/12.786940

  26. M. Pavlov, M. Doubenskaia, and I. Smurov, Pyrometric Analysis of Thermal Processes in SLM Technology, Phys. Proc., 2010, 5, p 523-531

    Article  Google Scholar 

  27. G.G. Gladush and I. Smurov, Plasma Phenomena in Laser Processing of Materials (Chapter 3), Physics of Laser Materials Processing, G.G. Gladush and I. Smurov, Ed., Springer, New York, 2011, p 145-210

    Chapter  Google Scholar 

  28. High-Alloy Steels and Corrosion-Proof, Heat-Resisting and Heat Treated Alloys, Grades, Russian National Standard GOST 5632-72, IPK Standards Publishing House, Moscow, 1972 (in Russian).

  29. J. Hollandt, O. Struss, G. Beynon, R. Bosma, R. Gaertner, F. Girard, M.S. Matveyev, H.C. McEvoy, G.R. Peacock, M. Sadli, F. Sakuma, H.W. Yoon, and Z. Yuan, First International Technical Specification on the Technical Data for Radiation Thermometers, IEC 62942-1 TS, IEC, Geneva, 2008

    Book  Google Scholar 

  30. Heat and Mass Transfer. Thermal Engineering Experiment: Handbook, V.A. Grigoriev, V.M. Zorin, Eds., Energoatomizdat, Moscow, 1982 (in Russian).

  31. CRC Handbook of Chemistry and Physics, D.R. Lide, Ed., CRC Press, 2004, 85

  32. E.I. Kazantsev, Industrial Ovens, Reference Guide for the Calculation and Design, Metallurgy, 1975 (in Russian).

  33. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Clarendon, Oxford, 1976

    Google Scholar 

  34. M.N. Özişik, Heat Conduction, Wiley, New York, 2009

    Google Scholar 

  35. A.V. Gusarov, I. Yadroitsev, P. Bertrand, and I. Smurov, Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting, J. Heat Transf., 2009, 131, p 072101

    Article  Google Scholar 

  36. I.O. Kovaleva, S.N. Grigoriev, and A.V. Gusarov, Non-disturbing Boundary Conditions for Modeling of Laser Material Processing, Phys. Proced., 2014, 56, p 421-428

    Article  Google Scholar 

  37. B. Mahmoudi, M.J. Torkamany, A.R. Sabour Rouh Aghdam, and J. Sabbaghzade, Laser Surface Hardening of AISI, 420 Stainless Steel Treated by Pulsed Nd: YAG Laser, Mater. Des., 2010, 31(5), p 2553-2560

    Article  Google Scholar 

  38. Y.M. Lahtin and T.V. Tarasova, Research of Surface Hardening Austenitic Steel After Thermal and Chemical-Thermal Treatment, Proc. of “IV Vses. Soveshchaniya “Struktura i svoystva nemagnitnykh staley”, 1983 (in Russian).

  39. I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064-8069

    Article  Google Scholar 

  40. J. Matějíček and P. Holub, Laser Remelting of Plasma-Sprayed Tungsten Coatings, J. Therm. Spray Technol., 2014, 23(4), p 750-754

    Article  Google Scholar 

Download references

Acknowledgments

This research has been financed by Russian Science Foundation (Grant Agreement No. 14-19-01647 from 04.07.2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kotoban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhirnov, I., Protasov, C., Kotoban, D. et al. New Approach of True Temperature Restoration in Optical Diagnostics Using IR-Camera. J Therm Spray Tech 26, 648–660 (2017). https://doi.org/10.1007/s11666-017-0523-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0523-z

Keywords

Navigation