Skip to main content
Log in

Tribological and Oxidative Behavior of Thermally Sprayed NiCrBSi Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The behavior of NiCrBSi coatings deposited by three different spraying techniques was studied: flame spray with a subsequent flame treatment (FS + Flame), flame spray with post-laser treatment (FS + Laser) and laser cladding (LC). The coating responses under wear and oxidation conditions were analyzed. Although the microstructure of the coatings deposited by the three different techniques showed similar phases and precipitates, some changes in the size and distribution of these constituents were observed. The pin on disk configuration was used to determine the friction coefficients and wear rates. LC coatings showed the highest wear resistance, with plastic deformation being the main wear mechanism identified for all of the coatings analyzed. Tests under aggressive environments were also performed to determine the oxidation kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Glaeser, Materials for Tribology, Elsevier Science Publishers B.V, The Netherlands, 1992

    Google Scholar 

  2. J.R. Davis, International Handbook Committee, A.S.M. Nickel, Cobalt, and Their Alloys, ASM Handbook series, ASM International, Ohio, 2001

    Google Scholar 

  3. U. Heubner, Nickel Alloys, Marcell Dekker Inc, New York, 1998

    Google Scholar 

  4. M. Roy, Surface Engineering for Enhanced Performance against Wear, Springer, Heidelberg, 2013

    Book  Google Scholar 

  5. J. Burnell-Gray and P.K. Datta, Surface Engineering Casebook: Solutions to Corrosion and Wear, Woodhead Publishing Limited, Cambridge, 1996

    Book  Google Scholar 

  6. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, England, 2008

    Book  Google Scholar 

  7. S. Houdková, E. Smazalová, M. Vostřák, and J. Schubert, Properties of NiCrBSi Coating, as Sprayed and Remelted by Different Technologies, Surf. Coat. Technol., 2014, 253, p 14-26

    Article  Google Scholar 

  8. C. Navas, R. Colaço, J. de Damborenea, and R. Vilar, Abrasive Wear Behaviour of Laser Clad and Flame Sprayed-Melted NiCrBSi Coatings, Surf. Coat. Technol., 2006, 200, p 6854-6862

    Article  Google Scholar 

  9. R. González, M. Cadenas, R. Fernández, J.L. Cortizo, and E. Rodríguez, Wear Behaviour of Flame Sprayed NiCrBSi Coating Remelted by Flame or by Laser, Wear, 2007, 262, p 301-307

    Article  Google Scholar 

  10. R. González, M.A. García, I. Penuelas, M. Cadenas, M. del Rocío Fernández, A. Hernández Battez, and D. Felgueroso, Microstructural Study of NiCrBSi Coatings Obtained by Different Processes, Wear, 2007, 263, p 619-624

    Article  Google Scholar 

  11. J.M. Miguel, J.M. Guilemany, and S. Vizcaino, Tribological Study of NiCrBSi Coating Obtained by Different Processes, Tribol. Int., 2003, 36, p 181-187

    Article  Google Scholar 

  12. Z. Bergant and J. Grum, Quality Improvement of Flame Sprayed, Heat Treated, and Remelted NiCrBSi Coatings, J. Therm. Spray Technol., 2009, 18, p 380-390

    Article  Google Scholar 

  13. J. Suutala, J. Tuominen, and P. Vuoristo, Laser-Assisted Spraying and Laser Treatment of Thermally Sprayed Coatings, Surf. Coat. Technol., 2006, 201, p 1981-1987

    Article  Google Scholar 

  14. M.R. Karimi, H.R. Salimijazi, and M.A. Golozar, Effects of Remelting Processes on Porosity of NiCrBSi Flame Sprayed Coatings, Surf. Eng., 2016, 32, p 238-243

    Article  Google Scholar 

  15. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Ohio, 2004

    Google Scholar 

  16. R.J.K. Wood, Tribo-Corrosion Of Coatings: A Review, J. Phys. D Appl. Phys., 2007, 40, p 5502-5521

    Article  Google Scholar 

  17. A.A. Boudi, M.S.J. Hashmi, and B.S. Yilbas, HVOF Coating of NI, 625 onto Stainless and Carbon Steel Surfaces: Corrosion and Bonding Testing, J. Mater. Process. Technol., 2004, 155-156, p 2051-2055

    Article  Google Scholar 

  18. J.R. Davis, Surface Engineering for Corrosion and Wear Resistance, ASM International, Ohio, 2001

    Google Scholar 

  19. E. Fernández, M. Cadenas, R. González, C. Navas, R. Fernández, and J. de Damborenea, Wear Behaviour of Laser Clad NiCrBSi Coating, Wear, 2005, 259, p 870-875

    Article  Google Scholar 

  20. T. Gómez del Río, M.A. Garrido, J.E. Fernández, M. Cadenas, and J. Rodríguez, Influence of the Deposition Techniques on the Mechanical Properties and Microstructure of NiCrBSi Coatings, J. Mater. Process. Technol., 2008, 204, p 304-312

    Article  Google Scholar 

  21. Geometrical Product Specifications (GPS)—Surface Texture: Profile method—Terms, Definitions and Surface Texture Parameters. ISO 4287:1997, International Organization for Standardization, 1997, p 1-25

  22. Geometrical Product Specification (GPS)—Surface Texture: Profile Method—Motif Parameters. ISO 12085:1998-05, International Organization for Standardization, 1998, p 1-17

  23. Standard Test Method for Wear Testing with a Pin on Disk Apparatus. ASTM G99-95, ASTM International, 1995, p 1-6

  24. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24, p 981-988

    Article  Google Scholar 

  25. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(4), p 1564-1583

    Article  Google Scholar 

  26. Standard Practice for Microetching Metals and Alloys. ASTM E407-99, ASTM International, 1999, p 1-21

  27. Standard guide for Metallographic Preparation of Thermal Sprayed Coatings. ASTM E1920-03, ASTM International, 2003, p 1-5

  28. J. Rodriguez, A. Martin, R. Fernandez, and J.E. Fernandez, An Experimental Study of the Wear Performance of NiCrBSi Thermal Spray Coatings, Wear, 2003, 255, p 950-955

    Article  Google Scholar 

  29. Q. Li, D. Zhang, T. Lei, C. Chen, and W. Chen, Comparison of Laser-Clad and Furnace-Melted Ni-Based Alloy Microstructures, Surf. Coat. Technol., 2001, 137, p 122-135

    Article  Google Scholar 

  30. D.W. Zhang, T.C. Lei, J.G. Zhang, and J.H. Ouyang, The Effects of Heat Treatment on Microstructure and Erosion Properties of Laser Surface-Clad Ni-Base Alloy, Surf. Coat. Technol., 1999, 115, p 176-183

    Article  Google Scholar 

  31. A.K. Nusair, J. Lu, and H. Liao, Effect of Residual Stresses on Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 168, p 291-299

    Article  Google Scholar 

  32. Y.Y. Santana, J.G. La Barbera-Sosa, M.H. Staia, J. Lesage, E.S. Puchi-Cabrera, D. Chicot, and E. Bemporad, Measurement of Residual Stress in Thermal Spray Coatings by the Incremental Hole Drilling Method, Surf. Coat. Technol., 2006, 201, p 2092-2098

    Article  Google Scholar 

  33. N. Serres, F. Hlawka, S. Costil, C. Langlade, F. Machi, and A. Cornet, Dry Coatings and Ecodesign. Part 2. Tribological Performances, Surf. Coat. Technol., 2009, 204, p 197-204

    Article  Google Scholar 

  34. N. Serres, F. Hlawka, S. Costil, C. Langlade, and F. Machi, Microstructures of Metallic NiCrBSi Coatings Manufactured via Hybrid Plasma Spray and In Situ Laser Remelting Process, J. Therm. Spray Technol., 2011, 20, p 336-343

    Article  Google Scholar 

  35. G. Qian, T. Nakamura, and C.C. Berndt, Effects of Thermal Gradient and Residual Stresses on Thermal Barrier Coating Fracture, Mech. Mater., 1998, 27, p 91-110

    Article  Google Scholar 

  36. J.A. Greenwood and J.B.P. Willamson, Contact of Nominally Flat Surfaces, Proc. R. Soc. Lond., 1966, 295(1442), p 300-319

    Article  Google Scholar 

  37. A. Rico, M.A. Garrido Maneiro, T. Gómez del Rio, A. Salazar, and J. Rodríguez, On the Determination of Elastic Modulus in Very Stiff Materials by Depth Sensing Indentation, J. Mater. Sci., 2009, 44(21), p 5795-5799

    Article  Google Scholar 

  38. H. Hertz, On the Contact of Elastic Solids, J. Reine. Angew. Math., 1881, 92, p 156-171 (in German)

    Google Scholar 

  39. I.M. Hutchings and E. Arnold, Friction and Wear of Engineering Materials, Hodder & Stoughton, London, 1992

    Google Scholar 

  40. A.G. Evans, J.W. Hutchinson, and M.Y. He, Micromechanics Model for the Detachment of Residually Brittle Films and Coatings, Acta Mater., 1999, 47, p 1513-1522

    Article  Google Scholar 

  41. C.H. Hsueh and E.R. Fuller, Analytical Modelling of Oxide Thickness Effects on Residual Stress in Thermal Barrier Coatings, Scr. Mater., 2000, 42(8), p 781-787

    Article  Google Scholar 

  42. M.Y. Ali, S.Q. Nusier, and G.M. Newaz, Mechanism of Damage Initiation and Growth in a TBC/Superalloy System, Int. J. Solids Struct., 2001, 38, p 3329-3340

    Article  Google Scholar 

  43. A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48, p 3963-3976

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Spanish government CICYT through Grants MAT2001-3528-C03-03 and MAT2013-41784-R for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Garrido.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, M.A., Rico, A., Gómez, M.T. et al. Tribological and Oxidative Behavior of Thermally Sprayed NiCrBSi Coatings. J Therm Spray Tech 26, 517–529 (2017). https://doi.org/10.1007/s11666-016-0521-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0521-6

Keywords

Navigation