A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition


Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    A. Papyrin, V. Kosarev, S. Krinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology, Elsevier, Oxford, 2006, p 287

    Google Scholar 

  2. 2.

    V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing and Maney Publishing on behalf of The Institute of Materials, Minerals & Mining, Cambridge, 2007, p 67

    Google Scholar 

  3. 3.

    R.G. Maev, V. Leschchynsky, E. Strumban, D. Dzhurinsky, J. Kocimski, and E. Maeva, Structure and Mechanical Properties of Thick Copper Coating Made by Cold Spray, J. Therm. Spray Technol., 2015, doi:10.1007/s11666-015-0313-4

    Google Scholar 

  4. 4.

    A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 36, p 369-395

    Article  Google Scholar 

  5. 5.

    F. Gartner, T. Stoltenhoff, J. Voier, H. Kreye, S. Riekehr, and M. Kocak, Mechanical Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200, p 6770-6782

    Article  Google Scholar 

  6. 6.

    T. Schmidt, H. Assadi, F. Gartner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klasse, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18, p 794-808

    Article  Google Scholar 

  7. 7.

    F. Gartner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15, p 223-232

    Article  Google Scholar 

  8. 8.

    E. Calla, D. McCarthy, and P. Shipway, Deposition of Copper by Cold Gas Dynamic Spraying: An Investigation of Dependence of Microstructure and Properties of the Deposits on the Spraying Conditions, J. Therm. Spray Technol., 2006, 15, p 255-262

    Article  Google Scholar 

  9. 9.

    D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.-G. Legoux, and E. Irissou, The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al14V Cold Sprayed Splats, J. Therm. Spray Technol., 2012, 21(2), p 288-303

    Article  Google Scholar 

  10. 10.

    B. Al-Mangour, R. Mongrain, E. Irissou, and S. Yue, Corrosion Resistance of 316 L Stainless Steel for Biomedical Applications Using Cold Spray, Surf. Coat. Technol., 2013, 216, p 297-307

    Article  Google Scholar 

  11. 11.

    Y. Watanabe, C. Yoshida, K. Atsumi, M. Yamada, and M. Fukumoto, Influence of Substrate Temperature on Adhesion Strength of Cold-Sprayed Coatings, J. Therm. Spray Technol., 2015, 24(1–2), p 86-91

    Google Scholar 

  12. 12.

    M.M. Sharma, T.J. Eden, and B.T. Golesich, Effect of Surface Preparation on the Microstructure, Adhesion, and Tensile Properties of Cold-Sprayed Aluminum Coatings on AA2024 Substrates, J. Therm. Spray Technol., 2015, 24(3), p 410-422

    Article  Google Scholar 

  13. 13.

    G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.-J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57, p 5654-5666

    Article  Google Scholar 

  14. 14.

    H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Spraying, Acta Mater., 2003, 51, p 4379-4394

    Article  Google Scholar 

  15. 15.

    C. Borchers, F. Gartner, T. Stoltenhoff, H. Assadi, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93, p 10064-10070

    Article  Google Scholar 

  16. 16.

    K. Yokoyama, M. Watanabe, S. Kuroda, Y. Gotoh, T. Schmidt, and F. Gartner, Simulation of Solid Particle Impact Behavior for Spray Processes, Mater. Trans., 2006, 47, p 1697-1702

    Article  Google Scholar 

  17. 17.

    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688

    Article  Google Scholar 

  18. 18.

    S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, Warm Spraying—A Novel Coating Process Based on High-Velocity Impact of Solid Particles, Sci. Tech. Adv. Mater., 2008, 9, p 033002-1

    Google Scholar 

  19. 19.

    R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8, p 559-564

    Article  Google Scholar 

  20. 20.

    F. Raletz, M. Vardelle, and G. Ezo’o, Critical Particle Velocity Under Cold Spray Conditions, Surf. Coat. Technol., 2006, 201, p 1942-1947

    Article  Google Scholar 

  21. 21.

    V.K. Champagne, D.J. Helfritch, S.P.G. Dinavahi, and P.F. Leyman, Theoretical and Experimental Particle Velocity in Cold Spray, J. Therm. Spray Technol., 2011, 20, p 425-431

    Article  Google Scholar 

  22. 22.

    Y. Li, Y. Hamada, K. Otobe, and T. Ando, Prediction of Locations of Poor Splat Bonding in Multi-Traverse Cold Spray Deposition, J. Jpn. Soc. Powder Powder Metall., 2016, 63(7), p 504-510

    Article  Google Scholar 

  23. 23.

    A. Hansbo and P. Nylén, Models for the Simulation of Spray Deposition and Robot Motion in Thermal Spraying of Rotting Objects, Surf. Coat. Technol., 1999, 122, p 191-201

    Article  Google Scholar 

  24. 24.

    D.A. Stepanenko, Modeling of Spraying with Time-Dependent Material Feed Rate, Appl. Math. Modell., 2007, 31, p 2564-2576

    Article  Google Scholar 

  25. 25.

    N. Rudak, S. Kuhnt, and E. Riccomagno, Modeling of a Thermal Spraying Process by Gaussian Chain Graphs, Qual. Technol. Quant. Measure., 2014, 11, p 85-98

    Article  Google Scholar 

  26. 26.

    C.-Y. Tsao, LDC Technique for Continuous Spray Forming of Sheet/Strip, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1982, p. 119

Download references


The authors at Northeastern University thank Fukuda Metal Foil & Powder Co., Ltd, for the financial support of this work.

Author information



Corresponding author

Correspondence to Teiichi Ando.


Appendix 1

Figure 12 schematically shows the measured thickness profile (solid curve), together with the corresponding ideal profile (broken curve). The value of η l , the average deposition efficiency in spray periphery (i.e., x > x o ), is calculated as η l  = A/B where A is the area under the actual thickness and B is the area under the ideal Gaussian thickness profile given by Eq 16. By approximating the actual thickness curve at x > x o by a straight line that hits the x-axis at x o + R, A is calculated as

$$A = \frac{{R\tau (x_{o} )}}{2}$$

B is calculated by integrating the ideal Gaussian thickness curve at x > x o,

$$\begin{aligned} B & = \frac{{\mu_{m} }}{\rho \nu }\sqrt {\frac{\pi }{\alpha }} \int_{{x_{o} }}^{\infty } {e^{{ - \alpha x^{2} }} } {\text{d}}x \approx \frac{\tau (0)}{{\eta_{h} }}\sqrt {\frac{\pi }{\alpha }} \int_{{x_{o} }}^{\infty } {e^{{ - \alpha x^{2} }} } {\text{d}}x = \frac{{\tau (x_{o} )}}{{\eta_{h} \xi_{o} }}\sqrt {\frac{\pi }{\alpha }} \int_{{x_{o} }}^{\infty } {e^{{ - \alpha x^{2} }} } {\text{d}}x \\ & = \frac{{\tau (x_{o} )}}{{2\eta_{h} \xi_{o} }}\sqrt {\frac{\pi }{\alpha }} \left[ {1 - erf\sqrt { - \ln \xi_{o} } } \right] \\ \end{aligned}$$

where τ(0) and (x o ) are the values of actual thickness determined at x = 0 and x o, respectively, and \(\xi_{o} = e^{{ - \alpha x_{o}^{2} }}\). Thus,

$$\frac{{\eta_{l} }}{{\eta_{h} }} = \sqrt {\frac{\alpha }{\pi }} \frac{{R\xi_{o} }}{{1 - erf\sqrt { - \ln \xi_{o} } }}$$

For the thickness profile in Fig. 1(b), R = 1.6 mm, ξ o  = 0.315 and α = 0.1000, which yield η l /η h  = 0.70.

Fig. 12

Schematic cross-sectional profiles of ideal and actual thickness of a single-traverse coating. The areal ratio A/B equals the average deposition efficiency η l at x > x o

Appendix 2

When a stationary axisymmetric cold spray with a Gaussian mass flow distribution μ(r) = μ(xy) = μ m exp[ − α(x 2 + y 2)] deposits mass on a flat substrate normal to the spray axis with a uniform deposition efficiency η, the deposited mass increases at a rate M′ given by

$$M^{\prime} = \eta \rho \iint {D\left( {x,y} \right)}{\text{d}}x{\text{d}}y$$

Equation 22 is integrated by substitution, ξ = exp(− αr 2), to yield

$$M^{\prime} = \frac{{\eta \mu_{m} }}{\alpha }\int_{0}^{1} {\pi r^{2} } d\xi = - \frac{{\eta \pi \mu_{m} }}{\alpha }\int_{0}^{1} {\ln \xi d\xi } = \frac{{\eta \pi \mu_{m} }}{\alpha }$$

If the spray has the duplex deposition rates illustrated in Fig. 7, M′ can be calculated by dividing the deposited mass into the three parts shown in Fig. 13: the dome A and the disk B in the core region (|r| ≤ r o) where the deposition efficiency is high at η h and the peripheral regions C (|r| > r o) where the deposition efficiency is low at η l . By applying Eq 23 to A and C,

$$\begin{aligned} M^{\prime} & = M^{\prime}_{A} + M^{\prime}_{B} + M^{\prime}_{C} \\ & = \frac{{\eta_{h} \mu_{m} }}{\alpha }\left( {\int_{{\xi_{0} }}^{1} {\pi r^{2} } d\xi + \xi_{o} \pi r_{o}^{2} } \right) + \frac{{\eta_{l} \mu_{m} }}{\alpha }\left( {\int_{0}^{{\xi_{0} }} {\pi r^{2} } d\xi - \xi_{o} \pi r_{o}^{2} } \right) \\ & = \frac{{\mu_{m} \pi }}{\alpha }\left[ {\eta_{h} - (\eta_{h} - \eta_{l} )} \right]\xi_{o} \\ \end{aligned}$$
Fig. 13

Mass deposition rate M′ of a spray with duplex deposition rates can be calculated in three parts: dome A and bottom disk B in the core region (r ≤ r o) and the peripheral regions C (r ≤ r o)

Since the mass flow rate of the spray M is πμ m /α which is obtained by substituting η = 1 in Eq 23, the overall deposition efficiency of the duplex spray, Ψ = M′/M, is given by

$$\varPsi = \eta_{h} - \left( {\eta_{h} - \eta_{l} } \right)\xi_{o}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hamada, Y., Otobe, K. et al. A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition. J Therm Spray Tech 26, 350–359 (2017). https://doi.org/10.1007/s11666-016-0517-2

Download citation


  • cold spray
  • deposition efficiency
  • splat bonding
  • thick coating