Journal of Thermal Spray Technology

, Volume 26, Issue 3, pp 350–359 | Cite as

A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition

  • Yangfan Li
  • Yukitaka Hamada
  • Katsunori Otobe
  • Teiichi AndoEmail author
Peer Reviewed


Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.


cold spray deposition efficiency splat bonding thick coating 



The authors at Northeastern University thank Fukuda Metal Foil & Powder Co., Ltd, for the financial support of this work.


  1. 1.
    A. Papyrin, V. Kosarev, S. Krinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology, Elsevier, Oxford, 2006, p 287Google Scholar
  2. 2.
    V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing and Maney Publishing on behalf of The Institute of Materials, Minerals & Mining, Cambridge, 2007, p 67CrossRefGoogle Scholar
  3. 3.
    R.G. Maev, V. Leschchynsky, E. Strumban, D. Dzhurinsky, J. Kocimski, and E. Maeva, Structure and Mechanical Properties of Thick Copper Coating Made by Cold Spray, J. Therm. Spray Technol., 2015, doi: 10.1007/s11666-015-0313-4 Google Scholar
  4. 4.
    A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 36, p 369-395CrossRefGoogle Scholar
  5. 5.
    F. Gartner, T. Stoltenhoff, J. Voier, H. Kreye, S. Riekehr, and M. Kocak, Mechanical Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings, Surf. Coat. Technol., 2006, 200, p 6770-6782CrossRefGoogle Scholar
  6. 6.
    T. Schmidt, H. Assadi, F. Gartner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klasse, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18, p 794-808CrossRefGoogle Scholar
  7. 7.
    F. Gartner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15, p 223-232CrossRefGoogle Scholar
  8. 8.
    E. Calla, D. McCarthy, and P. Shipway, Deposition of Copper by Cold Gas Dynamic Spraying: An Investigation of Dependence of Microstructure and Properties of the Deposits on the Spraying Conditions, J. Therm. Spray Technol., 2006, 15, p 255-262CrossRefGoogle Scholar
  9. 9.
    D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.-G. Legoux, and E. Irissou, The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al14V Cold Sprayed Splats, J. Therm. Spray Technol., 2012, 21(2), p 288-303CrossRefGoogle Scholar
  10. 10.
    B. Al-Mangour, R. Mongrain, E. Irissou, and S. Yue, Corrosion Resistance of 316 L Stainless Steel for Biomedical Applications Using Cold Spray, Surf. Coat. Technol., 2013, 216, p 297-307CrossRefGoogle Scholar
  11. 11.
    Y. Watanabe, C. Yoshida, K. Atsumi, M. Yamada, and M. Fukumoto, Influence of Substrate Temperature on Adhesion Strength of Cold-Sprayed Coatings, J. Therm. Spray Technol., 2015, 24(1–2), p 86-91Google Scholar
  12. 12.
    M.M. Sharma, T.J. Eden, and B.T. Golesich, Effect of Surface Preparation on the Microstructure, Adhesion, and Tensile Properties of Cold-Sprayed Aluminum Coatings on AA2024 Substrates, J. Therm. Spray Technol., 2015, 24(3), p 410-422CrossRefGoogle Scholar
  13. 13.
    G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.-J. Kim, and C. Lee, Bonding Features and Associated Mechanisms in Kinetic Sprayed Titanium Coatings, Acta Mater., 2009, 57, p 5654-5666CrossRefGoogle Scholar
  14. 14.
    H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Spraying, Acta Mater., 2003, 51, p 4379-4394CrossRefGoogle Scholar
  15. 15.
    C. Borchers, F. Gartner, T. Stoltenhoff, H. Assadi, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93, p 10064-10070CrossRefGoogle Scholar
  16. 16.
    K. Yokoyama, M. Watanabe, S. Kuroda, Y. Gotoh, T. Schmidt, and F. Gartner, Simulation of Solid Particle Impact Behavior for Spray Processes, Mater. Trans., 2006, 47, p 1697-1702CrossRefGoogle Scholar
  17. 17.
    M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688CrossRefGoogle Scholar
  18. 18.
    S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, Warm Spraying—A Novel Coating Process Based on High-Velocity Impact of Solid Particles, Sci. Tech. Adv. Mater., 2008, 9, p 033002-1Google Scholar
  19. 19.
    R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8, p 559-564CrossRefGoogle Scholar
  20. 20.
    F. Raletz, M. Vardelle, and G. Ezo’o, Critical Particle Velocity Under Cold Spray Conditions, Surf. Coat. Technol., 2006, 201, p 1942-1947CrossRefGoogle Scholar
  21. 21.
    V.K. Champagne, D.J. Helfritch, S.P.G. Dinavahi, and P.F. Leyman, Theoretical and Experimental Particle Velocity in Cold Spray, J. Therm. Spray Technol., 2011, 20, p 425-431CrossRefGoogle Scholar
  22. 22.
    Y. Li, Y. Hamada, K. Otobe, and T. Ando, Prediction of Locations of Poor Splat Bonding in Multi-Traverse Cold Spray Deposition, J. Jpn. Soc. Powder Powder Metall., 2016, 63(7), p 504-510CrossRefGoogle Scholar
  23. 23.
    A. Hansbo and P. Nylén, Models for the Simulation of Spray Deposition and Robot Motion in Thermal Spraying of Rotting Objects, Surf. Coat. Technol., 1999, 122, p 191-201CrossRefGoogle Scholar
  24. 24.
    D.A. Stepanenko, Modeling of Spraying with Time-Dependent Material Feed Rate, Appl. Math. Modell., 2007, 31, p 2564-2576CrossRefGoogle Scholar
  25. 25.
    N. Rudak, S. Kuhnt, and E. Riccomagno, Modeling of a Thermal Spraying Process by Gaussian Chain Graphs, Qual. Technol. Quant. Measure., 2014, 11, p 85-98CrossRefGoogle Scholar
  26. 26.
    C.-Y. Tsao, LDC Technique for Continuous Spray Forming of Sheet/Strip, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1982, p. 119Google Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Yangfan Li
    • 1
  • Yukitaka Hamada
    • 2
  • Katsunori Otobe
    • 2
  • Teiichi Ando
    • 1
    Email author
  1. 1.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA
  2. 2.R&D DepartmentFukuda Metal Foil & Powder Co., Ltd.KyotoJapan

Personalised recommendations