Skip to main content
Log in

Thermally Sprayed Large Tubular Solid Oxide Fuel Cells and Its Stack: Geometry Optimization, Preparation, and Performance

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, we develop a large tubular solid oxide fuel cells design with several cells in series on a porous cermet support, which has many characteristics such as self-sealing, low Ohmic loss, high strength, and good thermal expansion coefficient matching. Here, we investigate aspects of the cell design, manufacture, performance, and application. Firstly, the cell length and number of cells in series are optimized by theoretical analysis. Then, thermal spraying is applied as a cost-effective method to prepare all the cell components. Finally, the performance of different types of cells and two types of stacks is characterized. The maximum output power of one tube, which had 20 cells in series, reaches 31 and 40.5 W at 800 and 900 °C, respectively. Moreover, the output power of a stack assembled with 56 tubes, each with ten cells in series, reaches 800 W at 830 °C. The excellent single tube and cell stack performance suggest that thermally sprayed tubular SOFCs have significant potential for commercialized application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Singhal, High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications: Fundamentals, Elsevier, Design and Applications, 2003

    Google Scholar 

  2. S. Basu and B.M. Cetegen, Modeling of Liquid Ceramic Precursor Droplets in a High Velocity Oxy-Fuel Flame Jet, Acta Mater., 2008, 56(12), p 2750-2759

    Article  Google Scholar 

  3. Y. Yoo, Y. Wang, X. Deng, D. Singh, and J.-G. Legoux, Metal Supported Tubular Solid Oxide Fuel Cells Fabricated by Suspension Plasma Spray and Suspension High Velocity Oxy-Fuel Spray, J. Power Sources, 2012, 215, p 307-311

    Article  Google Scholar 

  4. R.A. George, Status of Tubular SOFC Field Unit Demonstrations, J. Power Sources, 2000, 86(1-2), p 134-139

    Article  Google Scholar 

  5. S.C. Singhal, Advances in Solid Oxide Fuel Cell Technology, Solid State Ion., 2000, 135(1-4), p 305-313

    Article  Google Scholar 

  6. B. Borglum and H. Ghezel-Ayagh, Development of Solid Oxide Fuel Cells at Versa Power Systems and Fuel Cell Energy, ECS Trans., 2015, 68(1), p 89-94

    Article  Google Scholar 

  7. L. Blum, P. Batfalsky, Q. Fang, L.G.J. de Haart, J. Malzbender, N. Margaritis, N.H. Menzler, and R. Peters, Solid Oxide Fuel Cell, Stack and System Development Status at Forschungszentrum Jülich, ECS Trans., 2015, 68(1), p 157-169

    Article  Google Scholar 

  8. H. Tsukuda, A. Notomi, and N. Histatome, Application of Plasma Spraying to Tubular-Type Solid Oxide Fuel Cells Production, J. Therm. Spray Technol., 2000, 9(3), p 364-368

    Article  Google Scholar 

  9. K. Miyamoto, M. Mihara, H. Oozawa, K. Hiwatashi, K. Tomida, M. Nishiura, H. Kishizawa, R. Mori, and Y. Kobayashi, Recent Progress of SOFC Combined Cycle System with Segmented-in-Series Tubular Type Cell Stack at MHPS, ECS Trans., 2015, 68(1), p 51-58

    Article  Google Scholar 

  10. L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, and M.L. Liu, Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2−x Yb x O3−δ, Science, 2009, 326, p 126-129

    Article  Google Scholar 

  11. L. Yang, Y. Choi, W. Qin, H. Chen, K. Blinn, M. Liu, P. Liu, J. Bai, T.A. Tyson, and M. Liu, Promotion of Water-Mediated Carbon Removal by Nanostructured Barium Oxide/Nickel Interfaces in Solid Oxide Fuel Cells, Nat. Commun., 2011, 2, p 357

    Article  Google Scholar 

  12. D. Ding, X. Li, S. Lai, K. Gerdes, and M. Liu, Enhancing SOFC Cathode Performance by Surface Modification Through Infiltration, Energy Environ. Sci., 2014, 7, p 552-575

    Article  Google Scholar 

  13. E.D. Wachsman and K.T. Lee, Lowering the Temperature of Solid Oxide Fuel Cells, Science, 2011, 334, p 935-939

    Article  Google Scholar 

  14. E.D. Wachsman, C.A. Marlowe, and K.T. Lee, Role of Solid Oxide Fuel Cells in a Balanced Energy Strategy, Energy Environ. Sci., 2012, 5(2), p 5498-5509

    Article  Google Scholar 

  15. T. Hibino, A. Hashimoto, T. Inoue, J.I. Tokuno, S.I. Yoshida, and M. Sano, A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures, Science, 2000, 288(5473), p 2031-2033

    Article  Google Scholar 

  16. C. Ding and T. Hashida, High Performance Anode-Supported Solid Oxide Fuel Cell Based on Thin-Film Electrolyte and Nanostructured Cathode, Energy Environ. Sci., 2010, 3, p 1729-1731

    Article  Google Scholar 

  17. R.A. George and N.F. Bessette, Reducing the Manufacturing Cost of Tubular Solid Oxide Fuel Cell Technology, J. Power Sources, 1998, 71(1-2), p 131-137

    Article  Google Scholar 

  18. R. Hansch, M.R.R. Chowdhury, and N.H. Menzler, Screen Printing of Sol-Gel-Derived Electrolytes for Solid Oxide Fuel Cell (SOFC) Application, Ceram. Int., 2009, 35(2), p 803-811

    Article  Google Scholar 

  19. C. Pijolat, Screen-Printing for the Fabrication of Solid Oxide Fuel Cells (SOFC), M. Prudenziati and J. Hormadaly, Ed., Printed Filmsed, Woodhead Publishing Limited, Oxford, 2012, p 469-495

  20. M. Letilly, O. Joubert, M.T. Caldes, and A.L.G. La Salle, Tape Casting Fabrication, Co-sintering and Optimisation of Anode/electrolyte Assemblies for SOFC Based on BIT07-Ni/BIT07, Int. J. Hydrogen Energy, 2012, 37(5), p 4346-4355

    Article  Google Scholar 

  21. C. Suciu, H. Tikkanen, I. Wærnhus, F. Goga, and E. Dorolti, Water-Based Tape-Casting of SOFC Composite 3YSZ/8YSZ Electrolytes and Ionic Conductivity of Their Pellets, Ceram. Int., 2012, 38(1), p 357-365

    Article  Google Scholar 

  22. J.-H. Myung, H.J. Ko, C.H. Im, J. Moon, and S.-H. Hyun, Development of Solid Oxide Fuel Cells (SOFCs) by Tape-Casting and Single-Step Co-firing of Monolithic Laminates, Int. J. Hydrogen Energy, 2014, 39(5), p 2313-2319

    Article  Google Scholar 

  23. H. Tikkanen, C. Suciu, I. Wærnhus, and A.C. Hoffmann, Dip-Coating of 8YSZ Nanopowder for SOFC Applications, Ceram. Int., 2011, 37(7), p 2869-2877

    Article  Google Scholar 

  24. Z. Zhou, D. Han, H. Wu, and S. Wang, Fabrication of Planar-type SOFC Single Cells by a Novel Vacuum Dip-Coating Method and Co-firing/Infiltration Techniques, Int. J. Hydrogen Energy, 2014, 39(5), p 2274-2278

    Article  Google Scholar 

  25. W. Sun, N. Zhang, Y. Mao, and K. Sun, Preparation of Dual-Pore Anode Supported Sc2O3-Stabilized-ZrO2 Electrolyte Planar Solid Oxide Fuel Cell by Phase-Inversion and Dip-Coating, J. Power Sources, 2012, 218, p 352-356

    Article  Google Scholar 

  26. T. Talebi, M. Haji, and B. Raissi, Effect of Sintering Temperature on the Microstructure, Roughness and Electrochemical Impedance of Electrophoretically Deposited YSZ Electrolyte for SOFCs, Int. J. Hydrogen Energy, 2010, 35(17), p 9420-9426

    Article  Google Scholar 

  27. R. Kiebach, W.-W. Zhang, W. Zhang, M. Chen, K. Norrman, H.-J. Wang, J.R. Bowen, R. Barfod, and P.V. Hendriksen, Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 Cathodes During Sintering and Solid Oxide Fuel Cell Operation, J. Power Sources, 2015, 283, p 151-161

    Article  Google Scholar 

  28. S.J. Skinner, Recent Advances in Perovskite-Type Materials for SOFC Cathodes, Fuel Cells Bull., 2001, 4(33), p 6-12

    Article  Google Scholar 

  29. M. Koi, S. Yamashita, and Y. Matsuzaki, Development of Segmented-in-series Cell-Stacks with Flat-Tubular Substrates, ECS Trans., 2007, 7, p 235-243

    Article  Google Scholar 

  30. H. Yoshida, T. Seyama, T. Sobue, and S. Yamashita, Development of Residential SOFC CHP System with Flatten Tubular Segmented-in-Series Cells Stack, ECS Trans., 2011, 35, p 97-103

    Article  Google Scholar 

  31. C.-X. Li, L.-L. Yun, Y. Zhang, C.-J. Li, and L.-J. Guo, Microstructure, Performance and Stability of Ni/Al2O3 Cermet-Supported SOFC Operating with Coal-Based Syngas Produced Using Supercritical Water, Int. J. Hydrogen Energy, 2012, 37(17), p 13001-13006

    Article  Google Scholar 

  32. G. Tadashi, K. Yoshinori, A. Yoshimasa, H. Nagao, K. Tatsuo, and K. Kenichiro, Development of 200 kW Class SOFC Combined Cycle System and Future View, Technical Review, vol. 45, Mitsubishi Heavy Industries, Ltd, Tokyo, 2008, p 33-36

  33. K. Fujita, T. Seyama, T. Sobue, and Y. Matsuzaki, Development of Segmented-in-Series-Type Solid Oxide Fuel Cells for Residential Applications, Energy Procedia, 2012, 28, p 153-161

    Article  Google Scholar 

  34. T.S. Lai and S.A. Barnett, Design Considerations for Segmented-in-Series Fuel Cells, J. Power Sources, 2005, 147(1-2), p 85-94

    Article  Google Scholar 

  35. K. Tomida, N. Hisatome, T. Kabata, H. Tsukuda, and Y. Yamazaki, Structural Modification of Segmented-in-Series Tubular SOFCs Using Performance Simulation and the Effect of (Sm, Ce)O2 Cathode Interlayer on the Generation Characteristics Under Pressurization, Electrochemistry, 2009, 77(10), p 865-875

    Article  Google Scholar 

  36. D. Cui and M. Cheng, Design for Segmented-in-Series Solid Oxide Fuel Cell Through Mathematical Modeling, J. Power Sources, 2010, 195(5), p 1435-1440

    Article  Google Scholar 

  37. R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, and D. Ghosh, Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges, J. Power Sources, 2007, 170(2), p 308-323

    Article  Google Scholar 

  38. M.R. Pillai, D. Gostovic, I. Kim, and S.A. Barnett, Short-Period Segmented-in-Series Solid Oxide Fuel Cells on Flattened Tube Supports, J. Power Sources, 2007, 163(2), p 960-965

    Article  Google Scholar 

  39. S.-L. Zhang, C.-X. Li, C.-J. Li, and G.-J. Yang, Microstructure and Properties of Porous Ni50Cr50-Al2O3 Cermet Support for Solid Oxide Fuel Cells, J. Therm. Spray Technol., 2012, 22(2-3), p 158-165

    Article  Google Scholar 

  40. C.-J. Li, C.-X. Li, and X.-J. Ning, Performance of YSZ Electrolyte Layer Deposited by Atmospheric Plasma Spraying for Cermet-Supported Tubular SOFC, Vacuum, 2004, 73(3-4), p 699-703

    Article  Google Scholar 

  41. C.-J. Li, X.-J. Ning, and C.-X. Li, Effect of Densification Processes on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel cells, Surf. Coat. Technol., 2005, 190(1), p 60-64

    Article  Google Scholar 

  42. A. Utz, H. Störmer, A. Leonide, A. Weber, and E. Ivers-Tiffée, Degradation and Relaxation Effects of Ni Patterned Anodes in H2-H2O Atmosphere, J. Electrochem. Soc., 2010, 157(6), p B920-B930

    Article  Google Scholar 

  43. D. Ding, B. Liu, Z. Zhu, S. Zhou, and C. Xia, High Reactive Ce0.8Sm0.2O1.9 Powders Via a Carbonate Co-precipitation Method as Electrolytes for Low-Temperature Solid Oxide Fuel Cells, Solid State Ion., 2008, 179(21-26), p 896-899

    Article  Google Scholar 

  44. C. Li, C. Li, Y. Xing, M. Gao, and G. Yang, Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma-Sprayed Cermet Supported Tubular SOFC, Solid State Ion., 2006, 177(19-25), p 2065-2069

    Article  Google Scholar 

  45. C.-J. Li, C.-X. Li, H.-G. Long, Y.-Z. Xing, and G.-J. Yang, Performance of Tubular Solid Oxide Fuel Cell Assembled with Plasma-Sprayed Sc2O3-ZrO2 Electrolyte, Solid State Ion., 2008, 179(27-32), p 1575-1578

    Article  Google Scholar 

  46. C.-X. Li, C.-J. Li, and L.-J. Guo, Performance of a Ni/Al2O3 Cermet-Supported Tubular Solid Oxide Fuel Cell Operating with Biomass-Based Syngas Through Supercritical Water, Int. J. Hydrogen Energy, 2010, 35(7), p 2904-2908

    Article  Google Scholar 

Download references

Acknowledgments

The present project was supported by the National High Technology Research and Development Program of China (Grant No. 2007AA05Z135) and National Basic Research Program (Grant No. 2012CB625100). The authors would like to thank Kai Wang, Zhun-Zhun Wang, Liang-Liang Yun, Wen-Bo Chen, Qing-Zhong Zheng, Jia-Feng Xiong, and Hong-Liang Wu for cell design and fabrication work. The authors also would like to thank Dr. Samson Yuxiu Lai and Prof. Meilin Liu from Georgia Institute of Technology for our paper’s polishing and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Xin Li or Chang-Jiu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SL., Li, CX., Liu, S. et al. Thermally Sprayed Large Tubular Solid Oxide Fuel Cells and Its Stack: Geometry Optimization, Preparation, and Performance. J Therm Spray Tech 26, 441–455 (2017). https://doi.org/10.1007/s11666-016-0506-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0506-5

Keywords

Navigation