Skip to main content
Log in

Numerical Study of Suspension Plasma Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. J. Fazilleau, C. Delbos, V. Rat, J.-F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26(4), p 371-391

    Article  Google Scholar 

  2. C. Delbos, J. Fazilleau, V. Rat, J.-F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26(4), p 393-414

    Article  Google Scholar 

  3. D. Waldbillig and O. Kesler, Effect of Suspension Plasma Spraying Process Parameters on YSZ Coating Microstructure and Permeability, Surf. Coat. Technol., 2011, 205(23), p 5483-5492

    Article  Google Scholar 

  4. F. Jabbari, M. Jadidi, R. Wuthrich, and A. Dolatabadi, A Numerical Study of Suspension Injection in Plasma-Spraying Process, J. Therm. Spray Technol., 2014, 23(1-2), p 3-13

    Article  Google Scholar 

  5. M. Jadidi, M. Mousavi, S. Moghtadernejad, and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24(1-2), p 11-23

    Google Scholar 

  6. R. Rampon, C. Filiatre, and G. Bertrand, Suspension Plasma Spraying of YPSZ Coatings: Suspension Atomization and Injection, J. Therm. Spray Technol., 2008, 17(1), p 105-114

    Article  Google Scholar 

  7. E. Meillot, S. Vincent, C. Caruyer, D. Damiani, and J. Caltagirone, Modelling the Interactions Between a Thermal Plasma Flow and a Continuous Liquid Jet in a Suspension Spraying Process, J. Phys. D Appl. Phys., 2013, 46(22), p 224017

    Article  Google Scholar 

  8. K. Toda and H. Furuse, Extension of Einstein’s Viscosity Equation to that for Concentrated Dispersions of Solutes and Particles, J. Biosci. Bioeng., 2006, 102(6), p 524-528

    Article  Google Scholar 

  9. D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(10), p 2132-2138

    Article  Google Scholar 

  10. J.S. Chong, E.B. Christiansen, and A.D. Baer, Rheology of Concentrated Suspensions, J. Appl. Polym. Sci., 1971, 15(8), p 2007-2021

    Article  Google Scholar 

  11. D.I. Lee, Packing of Spheres and Its Effect on Viscosity of Suspensions, J. Paint Technol., 1970, 42(550), p 579

    Google Scholar 

  12. N. Ashgriz, Handbook of Atomization and Sprays: Theory and Applications, Springer, New York, 2011

    Book  Google Scholar 

  13. R.S. Brodkey, The Phenomena of Fluid Motions, Courier Corporation, 1995

  14. C. Kang, H. Ng, and S. Yu, Comparative Study of Plasma Spray Flow Fields and Particle Behavior Near to Flat Inclined Substrates, Plasma Chem. Plasma Process., 2006, 26(2), p 149-175

    Article  Google Scholar 

  15. A.F. Ansys, ANSYS Fluent Theory Guide, 15.0 ed., ANSYS Inc., 2013.

  16. T.C.-M. Wu, M. Bussmann, and J. Mostaghimi, The Impact of a Partially Molten YSZ Particle, J. Therm. Spray Technol., 2009, 18(5-6), p 957-964

    Article  Google Scholar 

  17. S. Pope, An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly, AIAA J., 1978, 16(3), p 279-281

    Article  Google Scholar 

  18. F.M. White and I. Corfield, Viscous Fluid Flow, Vol 3, McGraw-Hill, New York, 2006

    Google Scholar 

  19. E. Pfender, Particle Behavior in Thermal Plasmas, Plasma Chem. Plasma Process., 1989, 9(1), p 167S-194S

    Article  Google Scholar 

  20. Y. Lee, K. Hsu, and E. Pfender, Modeling of Particles Injected into a Dc Plasma Jet, Proceedings of the 5th International Symposium on Plasma Chemistry, 1981

  21. Y. Chyou and E. Pfender, Behavior of Particulates in Thermal Plasma Flows, Plasma Chem. Plasma Process., 1989, 9(1), p 45-71

    Article  Google Scholar 

  22. X. Chen and E. Pfender, Effect of the Knudsen Number on Heat Transfer to a Particle Immersed into a Thermal Plasma, Plasma Chem. Plasma Process., 1983, 3(1), p 97-113

    Article  Google Scholar 

  23. L. Talbot, R. Cheng, R. Schefer, and D. Willis, Thermophoresis of Particles in a Heated Boundary Layer, J. Fluid Mech., 1980, 101(4), p 737-758

    Article  Google Scholar 

  24. E. Meillot, R. Vert, C. Caruyer, D. Damiani, and M. Vardelle, Manufacturing Nanostructured YSZ Coatings by Suspension Plasma Spraying (SPS): Effect of Injection Parameters, J. Phys. D Appl. Phys., 2011, 44(19), p 194008

    Article  Google Scholar 

  25. S. Vincent, G. Balmigere, C. Caruyer, E. Meillot, and J.-P. Caltagirone, Contribution to the Modeling of the Interaction Between a Plasma Flow and a Liquid Jet, Surf. Coat. Technol., 2009, 203(15), p 2162-2171

    Article  Google Scholar 

  26. M. Bussmann, J. Mostaghimi, and S. Chandra, On a Three-Dimensional Volume Tracking Model of Droplet Impact, Phys. Fluids (1994-Present), 1999, 11(6), p 1406-1417

    Article  Google Scholar 

  27. J. Beale and R. Rolf D, Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid Model, Atomization Sprays, 1999, 9(6), p 623-650

    Article  Google Scholar 

  28. M. A. Patterson and R. Rolf, Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission, SAE Technical Paper, 1998

  29. X. Chen and E. Pfender, Behavior of Small Particles in a Thermal Plasma Flow, Plasma Chem. Plasma Process., 1983, 3(3), p 351-366

    Article  Google Scholar 

  30. E.A.R. Stendal, Multiphase Flows in Cyclone Separators Modeling the Classification and Drying of Solid Particles Using CFD, Chalmers University of Technology, Gothenburg, 2013

    Google Scholar 

  31. E.J. Henley, J.D. Seader, and D.K. Roper, Separation Process Principles, Wiley, New York, 2011

    Google Scholar 

  32. K.N. Marsh and K. Marsh, Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell, Oxford, 1987

    Google Scholar 

  33. V. Majer and V. Svoboda, Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell, Oxford, 1985

    Google Scholar 

  34. W.E. Acree, Jr., and J.S. Chickos, Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P.J. Linstrom and W.G. Mallard, Eds., National Institute of Standards and Technology, Gaithersburg, MD. Retrieved September, 2016 from http://webbook.nist.gov

  35. A. Einstein, Eine neue Bestimmung der Moleküldimensionen, Ann. Phys., 1906, 324(2), p 289-306

    Article  Google Scholar 

  36. E. Guth and R. Simha, Untersuchungen über die Viskosität von Suspensionen und Lösungen. 3. Über die Viskosität von Kugelsuspensionen, Kolloid-Zeitschrift, 1936, 74(3), p 266-275

    Article  Google Scholar 

  37. D.G. Thomas, Transport Characteristics of Suspension: VIII. A Note on the Viscosity of Newtonian Suspensions of Uniform Spherical Particles, J. Colloid Sci., 1965, 20(3), p 267-277

    Article  Google Scholar 

  38. I.M. Krieger and T.J. Dougherty, A Mechanism for non-Newtonian Flow in Suspensions of Rigid Spheres, Trans. Soc. Rheol., 1959, 3(1), p 137-152

    Article  Google Scholar 

  39. C.A. Shook and M.C. Roco, Slurry Flow: Principles and Practice, Elsevier, Amsterdam, 2015

    Google Scholar 

  40. L.L. Schramm, Suspensions; Basic Principles, Suspensions: Fundamentals and Applications in the Petroleum Industry, American Chemical Society, Washington, DC, 1996, p 3–44

  41. T. Dabak and O. Yucel, Shear Viscosity Behavior of Highly Concentrated Suspensions at Low and High Shear-Rates, Rheol. Acta, 1986, 25(5), p 527-533

    Article  Google Scholar 

  42. H. Eilers, Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration, Kolloid-Zeitschrift, 1941, 97(3), p 313-321

    Article  Google Scholar 

  43. P.K. Senapati, B.K. Mishra, and A. Parida, Modeling of Viscosity for Power Plant Ash Slurry at Higher Concentrations: Effect of Solids Volume Fraction, Particle Size and Hydrodynamic Interactions, Powder Technol., 2010, 197(1), p 1-8

    Article  Google Scholar 

  44. B.A. Horri, P. Ranganathan, C. Selomulya, and H. Wang, A New Empirical Viscosity Model for Ceramic Suspensions, Chem. Eng. Sci., 2011, 66(12), p 2798-2806

    Article  Google Scholar 

  45. O. Arevalo-Quintero, D. Waldbillig, and O. Kesler, An Investigation of the Dispersion of YSZ, SDC, and Mixtures of YSZ/SDC Powders in Aqueous Suspensions for Application in Suspension Plasma Spraying, Surf. Coat. Technol., 2011, 205(21), p 5218-5227

    Article  Google Scholar 

  46. T.C. Patton, Paint Flow and Pigment Dispersion, Interscience, 1964, p 479

  47. M. Brossa and E. Pfender, Probe Measurements in Thermal Plasma Jets, Plasma Chem. Plasma Process., 1988, 8(1), p 75-90

    Article  Google Scholar 

  48. R. Bolot, M. Imbert, and C. Coddet, Mathematical Modeling of a Free Plasma Jet Discharging into Air and Comparison with Probe Measurements, Thermal Spray: A United Forum for Scientific and Technological Advances, 1997, p 549–555

  49. E. Meillot, D. Guenadou, and C. Bourgeois, Three-Dimension and Transient DC Plasma Flow Modeling, Plasma Chem. Plasma Process., 2008, 28(1), p 69-84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirsaman Farrokhpanah.

Additional information

This article is an invited paper selected from presentations at the 2016 International Thermal Spray Conference, held May 10-12, 2016, in Shanghai, P.R. China, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrokhpanah, A., Coyle, T.W. & Mostaghimi, J. Numerical Study of Suspension Plasma Spraying. J Therm Spray Tech 26, 12–36 (2017). https://doi.org/10.1007/s11666-016-0502-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0502-9

Keywords

Navigation