Journal of Thermal Spray Technology

, Volume 26, Issue 1–2, pp 12–36 | Cite as

Numerical Study of Suspension Plasma Spraying

  • Amirsaman FarrokhpanahEmail author
  • Thomas W. Coyle
  • Javad Mostaghimi
Peer Reviewed


A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.


droplet breakup particle trajectory suspension plasma spraying suspension viscosity 


  1. 1.
    J. Fazilleau, C. Delbos, V. Rat, J.-F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26(4), p 371-391CrossRefGoogle Scholar
  2. 2.
    C. Delbos, J. Fazilleau, V. Rat, J.-F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26(4), p 393-414CrossRefGoogle Scholar
  3. 3.
    D. Waldbillig and O. Kesler, Effect of Suspension Plasma Spraying Process Parameters on YSZ Coating Microstructure and Permeability, Surf. Coat. Technol., 2011, 205(23), p 5483-5492CrossRefGoogle Scholar
  4. 4.
    F. Jabbari, M. Jadidi, R. Wuthrich, and A. Dolatabadi, A Numerical Study of Suspension Injection in Plasma-Spraying Process, J. Therm. Spray Technol., 2014, 23(1-2), p 3-13CrossRefGoogle Scholar
  5. 5.
    M. Jadidi, M. Mousavi, S. Moghtadernejad, and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24(1-2), p 11-23Google Scholar
  6. 6.
    R. Rampon, C. Filiatre, and G. Bertrand, Suspension Plasma Spraying of YPSZ Coatings: Suspension Atomization and Injection, J. Therm. Spray Technol., 2008, 17(1), p 105-114CrossRefGoogle Scholar
  7. 7.
    E. Meillot, S. Vincent, C. Caruyer, D. Damiani, and J. Caltagirone, Modelling the Interactions Between a Thermal Plasma Flow and a Continuous Liquid Jet in a Suspension Spraying Process, J. Phys. D Appl. Phys., 2013, 46(22), p 224017CrossRefGoogle Scholar
  8. 8.
    K. Toda and H. Furuse, Extension of Einstein’s Viscosity Equation to that for Concentrated Dispersions of Solutes and Particles, J. Biosci. Bioeng., 2006, 102(6), p 524-528CrossRefGoogle Scholar
  9. 9.
    D. Chen, E.H. Jordan, and M. Gell, Effect of Solution Concentration on Splat Formation and Coating Microstructure Using the Solution Precursor Plasma Spray Process, Surf. Coat. Technol., 2008, 202(10), p 2132-2138CrossRefGoogle Scholar
  10. 10.
    J.S. Chong, E.B. Christiansen, and A.D. Baer, Rheology of Concentrated Suspensions, J. Appl. Polym. Sci., 1971, 15(8), p 2007-2021CrossRefGoogle Scholar
  11. 11.
    D.I. Lee, Packing of Spheres and Its Effect on Viscosity of Suspensions, J. Paint Technol., 1970, 42(550), p 579Google Scholar
  12. 12.
    N. Ashgriz, Handbook of Atomization and Sprays: Theory and Applications, Springer, New York, 2011CrossRefGoogle Scholar
  13. 13.
    R.S. Brodkey, The Phenomena of Fluid Motions, Courier Corporation, 1995Google Scholar
  14. 14.
    C. Kang, H. Ng, and S. Yu, Comparative Study of Plasma Spray Flow Fields and Particle Behavior Near to Flat Inclined Substrates, Plasma Chem. Plasma Process., 2006, 26(2), p 149-175CrossRefGoogle Scholar
  15. 15.
    A.F. Ansys, ANSYS Fluent Theory Guide, 15.0 ed., ANSYS Inc., 2013.Google Scholar
  16. 16.
    T.C.-M. Wu, M. Bussmann, and J. Mostaghimi, The Impact of a Partially Molten YSZ Particle, J. Therm. Spray Technol., 2009, 18(5-6), p 957-964CrossRefGoogle Scholar
  17. 17.
    S. Pope, An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly, AIAA J., 1978, 16(3), p 279-281CrossRefGoogle Scholar
  18. 18.
    F.M. White and I. Corfield, Viscous Fluid Flow, Vol 3, McGraw-Hill, New York, 2006Google Scholar
  19. 19.
    E. Pfender, Particle Behavior in Thermal Plasmas, Plasma Chem. Plasma Process., 1989, 9(1), p 167S-194SCrossRefGoogle Scholar
  20. 20.
    Y. Lee, K. Hsu, and E. Pfender, Modeling of Particles Injected into a Dc Plasma Jet, Proceedings of the 5th International Symposium on Plasma Chemistry, 1981Google Scholar
  21. 21.
    Y. Chyou and E. Pfender, Behavior of Particulates in Thermal Plasma Flows, Plasma Chem. Plasma Process., 1989, 9(1), p 45-71CrossRefGoogle Scholar
  22. 22.
    X. Chen and E. Pfender, Effect of the Knudsen Number on Heat Transfer to a Particle Immersed into a Thermal Plasma, Plasma Chem. Plasma Process., 1983, 3(1), p 97-113CrossRefGoogle Scholar
  23. 23.
    L. Talbot, R. Cheng, R. Schefer, and D. Willis, Thermophoresis of Particles in a Heated Boundary Layer, J. Fluid Mech., 1980, 101(4), p 737-758CrossRefGoogle Scholar
  24. 24.
    E. Meillot, R. Vert, C. Caruyer, D. Damiani, and M. Vardelle, Manufacturing Nanostructured YSZ Coatings by Suspension Plasma Spraying (SPS): Effect of Injection Parameters, J. Phys. D Appl. Phys., 2011, 44(19), p 194008CrossRefGoogle Scholar
  25. 25.
    S. Vincent, G. Balmigere, C. Caruyer, E. Meillot, and J.-P. Caltagirone, Contribution to the Modeling of the Interaction Between a Plasma Flow and a Liquid Jet, Surf. Coat. Technol., 2009, 203(15), p 2162-2171CrossRefGoogle Scholar
  26. 26.
    M. Bussmann, J. Mostaghimi, and S. Chandra, On a Three-Dimensional Volume Tracking Model of Droplet Impact, Phys. Fluids (1994-Present), 1999, 11(6), p 1406-1417CrossRefGoogle Scholar
  27. 27.
    J. Beale and R. Rolf D, Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid Model, Atomization Sprays, 1999, 9(6), p 623-650CrossRefGoogle Scholar
  28. 28.
    M. A. Patterson and R. Rolf, Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission, SAE Technical Paper, 1998Google Scholar
  29. 29.
    X. Chen and E. Pfender, Behavior of Small Particles in a Thermal Plasma Flow, Plasma Chem. Plasma Process., 1983, 3(3), p 351-366CrossRefGoogle Scholar
  30. 30.
    E.A.R. Stendal, Multiphase Flows in Cyclone Separators Modeling the Classification and Drying of Solid Particles Using CFD, Chalmers University of Technology, Gothenburg, 2013Google Scholar
  31. 31.
    E.J. Henley, J.D. Seader, and D.K. Roper, Separation Process Principles, Wiley, New York, 2011Google Scholar
  32. 32.
    K.N. Marsh and K. Marsh, Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell, Oxford, 1987Google Scholar
  33. 33.
    V. Majer and V. Svoboda, Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell, Oxford, 1985Google Scholar
  34. 34.
    W.E. Acree, Jr., and J.S. Chickos, Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P.J. Linstrom and W.G. Mallard, Eds., National Institute of Standards and Technology, Gaithersburg, MD. Retrieved September, 2016 from
  35. 35.
    A. Einstein, Eine neue Bestimmung der Moleküldimensionen, Ann. Phys., 1906, 324(2), p 289-306CrossRefGoogle Scholar
  36. 36.
    E. Guth and R. Simha, Untersuchungen über die Viskosität von Suspensionen und Lösungen. 3. Über die Viskosität von Kugelsuspensionen, Kolloid-Zeitschrift, 1936, 74(3), p 266-275CrossRefGoogle Scholar
  37. 37.
    D.G. Thomas, Transport Characteristics of Suspension: VIII. A Note on the Viscosity of Newtonian Suspensions of Uniform Spherical Particles, J. Colloid Sci., 1965, 20(3), p 267-277CrossRefGoogle Scholar
  38. 38.
    I.M. Krieger and T.J. Dougherty, A Mechanism for non-Newtonian Flow in Suspensions of Rigid Spheres, Trans. Soc. Rheol., 1959, 3(1), p 137-152CrossRefGoogle Scholar
  39. 39.
    C.A. Shook and M.C. Roco, Slurry Flow: Principles and Practice, Elsevier, Amsterdam, 2015Google Scholar
  40. 40.
    L.L. Schramm, Suspensions; Basic Principles, Suspensions: Fundamentals and Applications in the Petroleum Industry, American Chemical Society, Washington, DC, 1996, p 3–44Google Scholar
  41. 41.
    T. Dabak and O. Yucel, Shear Viscosity Behavior of Highly Concentrated Suspensions at Low and High Shear-Rates, Rheol. Acta, 1986, 25(5), p 527-533CrossRefGoogle Scholar
  42. 42.
    H. Eilers, Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration, Kolloid-Zeitschrift, 1941, 97(3), p 313-321CrossRefGoogle Scholar
  43. 43.
    P.K. Senapati, B.K. Mishra, and A. Parida, Modeling of Viscosity for Power Plant Ash Slurry at Higher Concentrations: Effect of Solids Volume Fraction, Particle Size and Hydrodynamic Interactions, Powder Technol., 2010, 197(1), p 1-8CrossRefGoogle Scholar
  44. 44.
    B.A. Horri, P. Ranganathan, C. Selomulya, and H. Wang, A New Empirical Viscosity Model for Ceramic Suspensions, Chem. Eng. Sci., 2011, 66(12), p 2798-2806CrossRefGoogle Scholar
  45. 45.
    O. Arevalo-Quintero, D. Waldbillig, and O. Kesler, An Investigation of the Dispersion of YSZ, SDC, and Mixtures of YSZ/SDC Powders in Aqueous Suspensions for Application in Suspension Plasma Spraying, Surf. Coat. Technol., 2011, 205(21), p 5218-5227CrossRefGoogle Scholar
  46. 46.
    T.C. Patton, Paint Flow and Pigment Dispersion, Interscience, 1964, p 479Google Scholar
  47. 47.
    M. Brossa and E. Pfender, Probe Measurements in Thermal Plasma Jets, Plasma Chem. Plasma Process., 1988, 8(1), p 75-90CrossRefGoogle Scholar
  48. 48.
    R. Bolot, M. Imbert, and C. Coddet, Mathematical Modeling of a Free Plasma Jet Discharging into Air and Comparison with Probe Measurements, Thermal Spray: A United Forum for Scientific and Technological Advances, 1997, p 549–555Google Scholar
  49. 49.
    E. Meillot, D. Guenadou, and C. Bourgeois, Three-Dimension and Transient DC Plasma Flow Modeling, Plasma Chem. Plasma Process., 2008, 28(1), p 69-84CrossRefGoogle Scholar

Copyright information

© ASM International 2016

Authors and Affiliations

  • Amirsaman Farrokhpanah
    • 1
    Email author
  • Thomas W. Coyle
    • 2
  • Javad Mostaghimi
    • 1
  1. 1.Mechanical and Industrial Engineering DepartmentUniversity of TorontoTorontoCanada
  2. 2.Materials Science and EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations